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Abstract—We propose a novel framework for extrinsic 

dexterous manipulation in robotics, termed SA-DEM. This 

approach is grounded in dual-stage reinforcement learning and 

decouples the challenge of pose adjustment for ungraspable 

objects through non-grasping manipulation into two distinct 

phases: interactive mode decision-making and manipulation 

action planning. Notably, this framework innovatively 

incorporates the stiffness information of manipulated objects into 

the decision-making process, enabling the robot to autonomously 

perceive, decide, and plan manipulation strategies for objects with 

diverse physical attributes. The first phase of SA-DEM involves a 

high-level agent responsible for planning the grasping pose of 

objects and their interaction locations with the environment, based 

on the initial state of the objects, observations from environmental 

point clouds, stiffness representations, and prior knowledge of 

grasping regions. The second phase is executed by a low-level 

agent, which focuses on planning specific manipulation actions 

such as poking and flipping. These actions are derived from 

autonomous exploration during the training process, negating the 

need for manual customization. Both agents employ a hybrid 

discrete-continuous action space along with time-abstracted and 

spatially grounded representations centered around the point 

cloud, culminating in a unified actor-critic reinforcement learning 

framework. 

Note to Practitioners—By utilizing external resources like 

environmental contact and dynamic interaction, common low 

degree-of-freedom (DoF) parallel jaw grippers can achieve 

dexterity beyond their design capabilities. Existing research on 

extrinsic dexterous manipulation is often limited by constrained 

environments, manually designed meta-parameters, and specific 

interaction types, frequently overlooking the influence of object 

stiffness. This oversight results in methods designed for rigid 

objects facing challenges when manipulating soft ones. Our 

proposed reinforcement learning-based SA-DEM framework aims 

to address these challenges. Simulations and real-world 

experiments validate SA-DEM's effectiveness in zero-shot transfer 

and generalization. This method enables non-grasping 

manipulation of objects with varying geometries, masses, and 

stiffnesses, relying solely on the planar and vertical supports 

provided by the environment. SA-DEM shows great promise for 

intelligent object manipulation solutions in applications involving 

low-DoF grippers, such as industrial automation, warehousing, 

logistics, and service robotics.  

 

Index Terms—Extrinsic dexterity, Non-grasping manipulation, 

Reinforcement learning 

I. INTRODUCTION 

uman-like dexterous robotic hands pose significant 

technical and cost challenges, prompting a preference 

for simpler parallel jaw grippers, such as two-finger 

and three-finger designs, which are easier to implement and 

control in practical applications [1]. For objects that are difficult 

to grasp or in constrained workspaces, parallel jaw grippers can 

manipulate objects in ways that extend beyond traditional 

grasping techniques. This approach, referred to as "Extrinsic 

Dexterity," leverages interactions with the surrounding 

environment to achieve dexterous manipulation [2]. Through 

non-grasping actions such as planar pushing [3], flipping with 

the aid of flat surfaces [4], and lifting using vertical supports 

[5], grippers with fixed DoF can demonstrate manipulation 

capabilities comparable to those of multi-fingered robotic 

hands, all without the need to alter their hardware structure. 

These systems can achieve remarkable dexterous flexibility by 

coordinating the object, environment, and fingers.  

Previous research on extrinsic dexterity has illustrated the 

ability of parallel jaw grippers to perform various non-grasping 

tasks. However, these studies predominantly rely on manually 

designed motions or primitives [6], [7] further make fixed 

assumptions about object properties and contact modes [8], [9]. 

H 

 
Fig. 1. Examples of non-grasping manipulation planned by the 

proposed method, including in-plane pushing, poking, and 

environment-assisted reorienting and flipping. Its innovation 

lies in autonomously determining the target posture and 

motion strategies based on the object's stiffness properties, 

while generating specific motion parameters. 
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The focus has primarily been on rigid objects, which limits 

manipulation planning to a narrow range of patterns [4] [5]. In 

contrast, real-world manipulation involves a complex and 

diverse range of objects. The contact dynamics and nonlinear 

changes that arise from interactions with materials of varying 

stiffness are challenging to predict and model accurately. 

Consequently, strategies designed for rigid objects may not be 

suitable for soft ones. Reinforcement learning offers a 

promising approach to overcoming the randomness and 

unpredictability of physical interactions through trial and error, 

enabling generalized manipulation capabilities across different 

objects [18]. Nevertheless, incorporating object stiffness into 

learning manipulation strategies presents significant 

challenges. This is primarily due to the difficulty in 

generalizing manually designed action primitives, which 

struggle to effectively address issues related to stiffness 

coupling. As a result, there is currently no flexible non-grasping 

manipulation method that adequately adapts to objects with 

varying stiffness properties. 

To address these challenges, we proposed a method called 

SA-DEM for dexterous extrinsic manipulation of non-

graspable objects via stiffness-aware dual-stage reinforcement 

learning. This approach decouples decision-making from 

execution planning in non-grasping manipulation, with high-

level and low-level agents generating distinct output policies. 

First, a hybrid discrete-continuous action space is introduced, 

enabling both agents to produce outputs in the same action 

format. This unification enables the application of a unified 

actor-critic reinforcement learning framework to effectively 

address interactive decision-making and action planning. Both 

agents utilize a time-abstracted and space-grounded object-

centric representation, with the high-level agent identifying the 

object's target location from the environmental point cloud and 

the low-level agent determining the gripper's contact location 

from the object point cloud. This cohesive architecture 

streamlines the design and ensures consistency across policies. 

Second, the constructed high-level agent integrates initial 

observations from various sources, including the environmental 

point cloud, the object point cloud, the stiffness point cloud, and 

the prior point cloud from the grasping region. By synthesizing 

this perceptual information, the agent infers the necessary target 

pose for the object and identifies the corresponding action types 

required by the low-level agent. To tackle the issue of sparse 

reward feedback, a proposed mapping method converts discrete 

rewards into a continuous space, thereby providing consistent 

and effective reward signals to enhance learning efficiency. 

Notably, by encoding the stiffness information and the prior 

grasping region into unified 3D point clouds, the agent 

eliminates the need to separately handle different modalities, 

thereby increasing the perceptual information density. 

Furthermore, the low-level agent functions as the action 

execution module, generating gripper contact points and action 

parameters based on the decisions made by the high-level agent 

and the real-time observations of the object point cloud. The 

action skills acquired by this low-level agent, such as planar 

poking and environmental flipping, are developed 

spontaneously during training. Finally, this approach 

autonomously explores environmental layouts and object 

attributes, generating long sequences of contact interactions 

based on the stiffness characteristics of the objects, thus 

allowing ungraspable objects to be adjusted into suitable poses 

for grasping. 

In summary, the main contributions of this work include: 

⚫ A novel dual-stage reinforcement learning method that 

integrates object stiffness for the first time to achieve 

flexible, autonomous planning for non-grasping 

manipulation. 

⚫ A unified 3D spatial observation representation and a 

consistent actor-critic framework that effectively 

addresses pose decision-making and action interaction 

in extrinsic dexterous manipulation. 

⚫ A data-driven learning strategy for the high-level agent 

that integrates discrete sparse action decisions into a 

continuous reward representation, significantly 

enhancing training performance. 

⚫ The trained policies demonstrate exceptional perceptual 

decision-making capabilities and dynamic manipulation 

skills, enabling it to autonomously determine target 

poses for objects of varying stiffness and execute diverse 

actions such as pushing, poking, and flipping. 

II. RELATED WORK 

A. Extrinsic Dexterity 

Low-DoF robotic parallel jaw grippers can exhibit extrinsic 

dexterity through gravity, dynamic motion, or external contact, 

enabling them to perform complex manipulation tasks. Early 

research primarily imposed environmental constraints while 

manually designing interactive actions and controllers. For 

instance, Dafle et al. [2] developed a series of manually 

programmed open-loop trajectories for grasping postures 

tailored to specific objects. Eppner et al. [10] customized 

control strategies for sliding to the edge of a table or pushing 

against a wall, leveraging environmental constraints. Bimbo et 

al. [11] employed edge sliding to facilitate manipulation. 

However, these methods are limited to known environments 

and constrained interaction conditions. 

Combining primitives can achieve more complex tasks by 

refining interactive actions and decomposing them into motion 

primitives. Eppner et al. [6] designed action primitives based on 

environmental measurements to inform grasping strategies. 

Hou et al. [7] proposed two motion primitives, rotation and 

compliant rolling, addressing the reorientation problem through 

hierarchical planning. Nonetheless, such approaches rely on 

fixed primitives, which can create gaps in actions that extend 

beyond predefined ranges. 

With the introduction of contact-mode-guided manipulation 

methods by Cheng et al. [8], [9], the manual design of motion 

primitives has become unnecessary. These methods 

automatically enumerate contact modes between the 

environment and objects to identify effective manipulation 

sequences. Chavan et al. [12] provided a geometric definition 

and algebraic analysis of friction dynamics, abstracting a 
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feasible motion cone for planar pushing. However, these 

methods are limited by assumptions regarding interactions and 

specific ranges of contact adhesion. 

Recently, learning-based methods for manipulation have 

gained attention due to their applicability in complex contact 

interactions [13], [14], demonstrating potential in skill 

complexity and operational flexibility[15], [16], [17]. For 

example, Chi et al. [18] employed diffusion models to represent 

robotic visual motion strategies, illustrating the feasibility of 

generating behaviors such as planar pushing and object pose 

adjustment. Kim et al. [19] developed a Tac2Pose-based 

controller  [20] that leverages environmental interactions to 

control object poses. Zhou et al. [4] proposed a hybrid discrete-

continuous action representation using reinforcement learning 

to implement a poking strategy for planar objects based on point 

cloud observations. However, this method provides only a 

single interaction mode and requires a predetermined target 

pose. Yang et al. [21] introduced a hierarchical reinforcement 

learning framework that processes depth images to output 

pixel-level Q-values, focusing solely on a single wall-flipping 

strategy, which limits the selection of interaction contact points. 

Overall, existing learning-based methods for extrinsic 

dexterity primarily concentrate on rigid body manipulation, 

often neglecting the substantial influence of object deformation 

on interaction outcomes. These approaches typically rely on 

specific manipulation modes or are limited to predefined 

actions, constraining their applicability in diverse scenarios. 

This highlights the necessity for a novel strategy integrating 

object characteristics into robotic systems' decision-making 

processes while offering various adaptive and responsive 

manipulation skills. 

B. Non-Grasping Manipulation Planning 

Grasping is a critical task in robotic manipulation, with 

extensive research dedicated to the generation and execution of 

grasping postures [22]. However, when the grasp configuration 

conflicts with the environment, failing direct grasping, non-

grasping manipulation becomes necessary to adjust the object's 

pose. This adjustment leverages interactions among the robot, 

the object, and the environment to achieve extrinsic dexterity 

[23], [24], [25], [26]. The variability in contact introduces high-

dimensional, non-convex planning challenges, leading to 

lengthy sequences of object pose adjustments. Posa et al. [27] 

formulated multi-contact dynamics as a linear complementarity 

problem, utilizing sequential quadratic programming to 

optimize local trajectories. However, this method is primarily 

applicable to objects with regular geometries. 

Analyzing contact kinematics allows feasible contact paths to 

be identified within a multi-redundant configuration space.  

Huang et al. [28] transformed multi-rigid-body hybrid 

dynamics problems into combinatorial geometry problems, 

solving for effective motion polyhedral cones. Cheng et al. [29] 

proposed a planning method based on a Monte Carlo tree search 

to optimize object motion and contact modes. Other works [8] 

and [9] have also employed sampling methods to plan contact 

sequences. However, despite their ability to generate 

continuous motion paths, the frequent feasibility checks 

required by these methods can hinder planning efficiency. 

Recent research has explored learning-based methods to 

tackle non-grasping manipulation tasks. Wu et al. [30] 

introduced a spatial action map and employed reinforcement 

learning for motion planning in mobile manipulation tasks. 

Liang et al. [31] proposed hybrid force-velocity controllers that 

learn to predict the success rates of candidate contact actions 

and plan motions to achieve target poses. Lee et al. [32] 

combined vision-based interactive policy distillation with 

reinforcement learning to tackle object stacking and assembly 

tasks. Zhou et al. [5] concentrated on a singular strategy for 

flipping objects in unfavorable configurations, which requires 

initial positioning and tracking of object poses. 

In summary, existing methods typically rely on a 

predetermined target pose for the object, training manipulation 

strategies to generate actions that reduce discrepancies without 

adequately addressing the necessity for pose decision-making 

in general scenarios. The ability of an agent to autonomously 

determine the target pose for non-grasping manipulation 

adjustments based on environmental conditions and the object's 

initial state is critical for adapting to a broader range of 

applications.  

III. TASK DEFINITIONS AND ASSUMPTIONS 

This research addresses a critical yet underexplored issue: the 

impact of object stiffness on non-grasping manipulation. In 

particular, for interaction actions such as poking and flipping, 

the stiffness of the object affects the deformation during 

contact, thereby altering the initial applied force, as illustrated 

in Fig.2.  

To simplify the problem modeling, the moment arm is 

approximated as parallel to the corresponding edge while 

neglecting the plastic deformation of the object and assuming 

there is no relative slipping between the object, the 

environment, and the manipulator. Given the object's 

 
Fig. 2. The impact of object stiffness on deformation during 

contact for poking (a) and flipping (b), along with the 

simplified models (c) and (d). "rig" and "def" indicate rigid and 

deformable objects, respectively, assuming a consistent force 

angle. ∆ represents the compression length. 
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dimensions 𝑙obj × 𝑤obj × ℎobj , gravitational force 𝑮obj , 

material Young's modulus 𝐸, and the cross-sectional area 𝐴 of 

the contact region, the condition under which flipping can be 

more efficient than poking for deformable objects is expressed 

as 

(𝑙obj − ℎobj)𝑭 sin 𝜃def > (𝑙obj − ℎobj)𝑭2 sin 2𝜃def 2𝐴𝐸⁄   (1) 

where 𝑭  is the interaction force. 𝜃def  represents the angle 

between the interaction force and the moment arm for the soft 

objects. Consequently, the range of applied force that optimally 

favors flipping can be deduced as 

𝑮obj𝑙obj/2(𝑑 − Δ𝑑) sin 𝜃def < |𝑭| < 𝐴𝐸 cos 𝜃def⁄  (2) 

In this context, for poking, 𝑑 and 𝛥𝑑 correspond to ℎobj and 

Δℎobj, respectively. For flipping, 𝑑 and 𝛥𝑑 correspond to 𝑙obj  

and 𝛥𝑙obj, respectively.  

The contact force in this hypothesis is constrained by an upper 

limit, indicating that the flipping strategy can achieve posture 

adjustment with a smaller interaction force compared to poking. 

Consequently, flipping is particularly effective for adjusting the 

posture of moderately deformable objects and thin items. 

However, additional pre-adjustment steps are required to align 

the object's vertical support face with the environment. In 

contrast, poking is beneficial for rigid objects and those with a 

certain thickness that cannot be grasped, as it allows for non-

grasping adjustments around the initial posture while 

minimizing the cost of planar movement. 

IV. METHODOLOGY 

A. Framework Overview 

This paper presents a dual-stage reinforcement learning-based 

framework for dexterous extrinsic manipulation called SA-

DEM. This framework addresses challenges such as redirecting 

initially ungraspable object poses, making decisions regarding 

environmental interactions, and planning object manipulation 

in non-grasping postures. An overview of the framework is 

illustrated in Fig.3. The framework decouples complex and 

stochastic contact interaction problems into a hierarchical 

structure encompassing global decision-making and motion 

execution, without relying on manually designed motion 

primitives or explicit dynamic model assumptions. 

In this framework, the high-level agent is tasked with 

perceiving and integrating observations of the environmental 

state, performing stiffness sensing, and gathering global 

information about desired object-grasping regions. This agent 

utilizes reasoning to determine appropriate interaction poses for 

objects relative to the environment, which includes identifying 

target poses after object redirection and specifying the types of 

non-grasping adjustments needed for robot manipulation. 

The low-level agent, guided by the global decisions made by 

the high-level agent, continuously monitors current objects and 

environmental information. It deduces optimal contact 

positions and post-contact motion parameters for robot-object 

interaction. The low-level agent constructs a three-dimensional, 

vision-driven, closed-loop feedback planner using temporal 

abstraction and spatial grounding representations. This system 

progressively moves the object toward the target poses 

generated by the high-level agent. 

Both agents in SA-DEM are developed based on a Q-

learning-based off-policy algorithm. Each agent formulates a 

Markov Decision Process (MDP) characterized by states 𝑠𝑡 ∈
𝓢 , actions 𝑎𝑡 ∈ 𝓐 , a reward function 𝑟: 𝓢 × 𝓐 → ℝ , and a 

discount factor 𝛾 . Within each agent, an actor network 

generates a deterministic policy 𝜋(𝑎𝑡|𝑠𝑡) , while a critic 

network computes the Q-function 𝑄π(𝑠, 𝑎) =
𝔼π[ ∑ 𝛾𝑖𝑟𝑡+𝑖

∞
𝑖=0 ∣∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ] . These networks are 

intricately designed with tailored network structures and data 

flows optimized for specific tasks. 

B. Global Perception Integration and Decision-Making 

The overall architecture of the proposed high-level agent is 

illustrated in Fig.4. 

Observation and Action Spaces. The observation space of 

the high-level agent comprises three main components: the 

environmental point cloud of the current scene 𝓟env =

 
Fig. 3. An overview of SA-DEM framework. The implementation involves four steps: First, visual observation is conducted to 

obtain the initial point cloud of the environment and the object. Second, the stiffness information of the objects is perceived and 

represented as a point cloud of object deformation. Third, the high-level agent integrates visual observations, stiffness 

information, and priors on grasp positions to determine the target pose and the action type. Finally, the low-level agent 

continuously monitors the state of the object and plans manipulation actions until it reaches the target pose. 
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{𝒑𝑖
env}𝑖=1

𝑁𝑒 , where 𝒑𝑖
env  represents individual points in the 

environmental point cloud, segmented into plane regions and 

wall areas; the robot's tactile point cloud obtained from 

sequential object contacts under the current pose 𝓟𝑡
con =

{𝒑𝑡,𝑖
con}𝑖=1

𝑁𝑡 , where 𝒑𝑡,𝑖
con denotes the points in the contact point 

cloud that are engaged by the gripper's fingers at time step 𝑡; 

and the point cloud representing expected grasp poses for the 

object sourced from an offline database 𝓟gsp = {𝒑𝑖
gsp

}
𝑖=1

𝑁𝑔
, 

where 𝒑𝑖
gsp

 signifies points indicating graspable and non-

graspable regions on the object. 𝑁𝑒 , 𝑁𝑡 , and 𝑁𝑔  represent the 

number of points in each respective point cloud, respectively. 

During environmental observation, the robot's end-effector 

moves to a reset position to acquire unobstructed and complete 

point clouds. The contact area point cloud in the tactile data 

𝓟𝑡
con  consists of fingertip offset positions perceived by the 

robot after contacting the object, which is locally mapped to the 

initial object point cloud observed. 

The action space is centered around the environmental point 

cloud, specifically identifying safe and stable grasping plane 

regions. This space encompasses three components: a 

repositioned target object position 𝑻pos  within the 

environmental point cloud, the reoriented target object 

orientation 𝑻ori, and the decision 𝐴type for adjusting the object 

to the target pose. It integrates discrete object repositioning 

target positions with continuous reorientation directions and 

action-type decisions. 

Model Architecture. Given the observation 𝑠 =
{𝓟env, 𝓟𝑡

con, 𝓟gsp} , the high-level agent's actor network 

outputs the redirected object target orientation and robot action 

type strategy (poke or flip) for each point 𝒑𝑖  in the 

environmental point cloud: 𝜋𝑖
high(𝑠) = 𝒂𝑖

high
= {𝒂𝑖

pose
∈

ℝ3, 𝑎𝑖
type

∈ ℝ}. The critic network computes the Q-value for 

each 𝒑𝑖: 𝑞𝑖 = 𝑄high(𝑠, 𝒂𝑖
high

), representing the estimated return 

when using the actor's generated target orientation and action 

type at that point. The point corresponding to the maximum Q-

value and the actor's output parameters determines the high-

level agent's decision on where to place the object and which 

action type to execute. 

To extract and integrate multiple masked information from 

point clouds, a Multi-Information Extraction and Fusion 

module (MI-EF) is introduced in the high-level agent, as 

illustrated in Fig.4. The MI-EF module comprises three point 

cloud encoders tailored to extract features from 𝓟gsp, 𝓟env and 

sequential 𝓟𝑡
con. These encoders share the same structure but 

have independent parameters. To capture the dynamic 

characteristics of object shape changes during stiffness 

exploration, the MI-EF module incorporates an LSTM module. 

By embedding the feature sequences of 𝓟𝑡
con over 𝑡 time steps 

processed by the encoders into the LSTM module, the MI-EF 

module generates tactile encodings containing temporal tactile 

information and dynamic features. Subsequently, the encoded 

vectors from the three point clouds are concatenated to produce 

the fusion feature output of the MI-EF module. This feature, 

decoded by an actor’s Pose/Strategy decoder composed of 

MLPs, represents target pose parameters 𝒂𝑖
pose

= [𝛼𝑖 , 𝛽𝑖 , 𝜃𝑖] , 

where 𝛼𝑖 , 𝛽𝑖 , 𝜃𝑖  signify Euler rotation angles around the x, y, 

and z axes, respectively, constrained within [0, 2𝜋] . 

Additionally, 𝑎𝑖
type

∈ [−1, 1] , with 𝑎𝑖
type

≤  0  corresponding 

to "poke" and 𝑎𝑖
type

>  0 corresponding to "flip". 

Using identical structures but independent parameters, the 

 
Fig. 4. Architecture of the high-level agent. This model uses point cloud observations that capture the environment, variations 

in object contact, and grasping region priors. The Actor generates an actor map from these observations, outputting the target 

pose and action type for each environmental point. Critic features connect to the actor map. A Q-network then produces a critic 

map. The output of the high-level agent consists of the point with the highest Q-value along with its associated target pose and 

action type. 
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MI-EF module for the critic extracts features from input point 

clouds. Each point’s critic feature vector, concatenated with 

policy parameters generated by the actor at that point, 

undergoes processing by a Q-network comprising MLPs to 

derive the Q-value for each point. The highest-scoring point 

among all environmental points determines the position, target 

pose, and action type decision parameters for the global 

decision output, thereby guiding the subsequent motion 

execution of the Low-level agent.  

The update rule is defined as follows: Let 𝜓  denote the 

network parameters of the actor 𝜋high. The actor's loss function 

ℒ𝜓
actor is set to the expected Q-value of all points 𝒑𝑖, weighted 

by their selection probabilities 𝜇(𝒑𝑖|𝑠): 

ℒ𝜓
actor = 𝔼𝒑𝑖~𝜇(ℒ𝜓,𝑖

actor) = ∑ 𝜇(𝒑𝑖|𝑠)𝑁𝑒
𝑖=1 ∙ ℒ𝜓,𝑖

actor (3) 

with 

ℒ𝜓,𝑖
actor = −𝑄high (𝑠, 𝜋𝜓,𝑖

high(𝑠)) = −𝑄high(𝑓𝑖
high

, 𝒂𝑖
𝑝𝑜𝑠𝑒

, 𝑎𝑖
type

), 

𝜇(𝒑𝑖|𝑠) = 𝜇(𝒑𝑖|𝒫
env) = exp (𝜆𝑞𝑖) ∑ exp (𝜆𝑞𝑘)𝑁𝑒

𝑘=1⁄ , 

where 𝜆  denotes the temperature parameter utilized in the 

softmax operation, influencing the exploration strategy for 

determining the target location of the redirected object. 𝑁𝑒 

represents the count of points within the plane subset of 𝓟env, 

specifically indicating available locations for placing objects. 

Let 𝜙  denote the network parameters of the critic 𝑄high . 

Given the dataset 𝒟 = {𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1}, the Q-function's loss, as 

derived from the Bellman residual, is formulated as: 

ℒ𝜙,𝑖
critic = 𝔼(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)~𝒟 [(𝑦𝑡 − 𝑄𝜙(𝑠𝑡 , 𝑎𝑡))

2

] (4) 

where  

𝑦𝑡 =  𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝔼𝑝𝑖~𝜇 [𝑄𝜙 (𝑓𝑖
high(𝑠𝑡+1), 𝜋𝜃,𝑖

high(𝑠𝑡+1))] 

Reward. To evaluate the effectiveness of object redirection 

poses 𝒂𝑖
pose

 produced by higher-level agents and non-grasping 

adjustment strategies 𝑎𝑖
type

, the following criteria should be 

considered: (1) Whether the adjusted grasp region point cloud 

aligns with the expected grasp pose or not; (2) Whether the low-

level agent can use 𝑎𝑖
type

 to adjust the object from its initial pose 

to the redirection pose 𝒂𝑖
pose

 or not; (3) Whether the redirected 

object interferes with the environment or not. 

Given that the success rate of non-grasping pose adjustments 

is highly dependent on the adjustment strategy 𝑎𝑖
type

, the 

tabletop environment 𝓟env, and object properties, to avoid the 

inefficiencies associated with frequent calls to the low-level 

agent during training and the infrequency of effective reward 

feedback, this paper proposes a data-driven continuous 

distribution reward representation method. This method 

establishes a continuous distribution function for success rates 

that considers environmental layout, object stiffness 

coefficients, manipulation strategies, and discrete point success 

rates. 

Define the object’s graspable pose with its z-axis oriented 

vertically. Sample redirection poses uniformly within the 

feasible space 𝒞 = {(𝑥, 𝑦, 𝜃𝑧)|𝑥 ∈ ℝ, 𝑦 ∈ ℝ, 𝜃𝑧 ∈ ℝ}. Use the 

low-level agent with a specified adjustment strategy 𝑎𝑖
type

 to 

reorient the object from any initial pose to the target redirection 

pose 𝒂𝑖
pose

. Conduct multiple random experiments to compute 

each sampled pose's average success rate 𝑆 at various object 

stiffness coefficients. This yields mappings of stiffness 

coefficients, discrete poses, and success rates for both poke and 

flip strategies, i.e. 𝑀: 𝒞 → [0,1]. 
Directly switching between the discrete success rate 

mappings for these strategies complicates the training of high-

level agents. To address this, we propose a continuous success 

rate distribution function that integrates the mappings from both 

strategies by transitioning through object stiffness coefficients. 

The function is defined as follows: 

𝑆 = {

𝑆flp,

𝜅 ∙ (𝑆flp + 𝑓 ∙ (𝑆pok − 𝑆flp)) ,

𝑆pok,

𝑘𝑠 < 𝑘𝑙
𝑠

𝑘𝑙
𝑠 ≤ 𝑘𝑠 < 𝑘ℎ

𝑠

𝑘𝑠 ≥ 𝑘ℎ
𝑠

     (5) 

with  

 
Fig. 5. Architecture of the low-level agent. This model employs point cloud observations of the environment and the object. 

The Actor processes point clouds and point flow to create an actor map that specifies motion parameters for each object point. 

Critic features connect to the actor map and the action decision of the high-level agent. These features are processed through a 

Q-network to generate a critic map. The output of the low-level agent includes the object point with the highest Q-value and its 

corresponding motion parameters. 
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𝜅 = 𝜅base + 𝜅adj ∙ min (‖𝑘𝑠 −
𝑘𝑙

𝑠+𝑘ℎ
𝑠

2
‖ , 𝜅max), 

𝑓(𝑘𝑠, 𝑘𝑙
𝑠, 𝑘ℎ

𝑠) = [1 + exp (−𝜎mod (
𝑘𝑠−𝑘𝑙

𝑠

𝑘ℎ
𝑠 −𝑘𝑙

𝑠 − 𝜎norm))]

−1

, 

where 𝑘𝑠  is the stiffness coefficient, with 𝑘𝑙
𝑠  and 𝑘ℎ

𝑠  as 

transition thresholds. 𝜅  adjusts the extrema of the reward 

function, using weighted polarization to bias the reward 

transition towards a single strategy. This adjustment is 

regulated by three parameters: 𝜅base, the baseline weight; 𝜅adj, 

the adjustment magnitude; and 𝜅max , which limits the upper 

bound of the shift. 𝑓 is a smoothing function used to transition 

between the success rates of two strategies: 𝑆flp  and 𝑆pok . 

( 𝜎mod  is the modulation coefficient, and 𝜎norm  is the 

normalized centroid.) Thus, the reward function 𝑟 is defined 

as : 

𝑟 = 𝑆 ⋅ exp (−(𝜙1 ∙ 𝐷ori + 𝜙2 ∙ 𝐷pos)) + 𝑅col − 1    (6) 

where 𝐷ori  represents the orientation distance between the 

redirected and suggested orientations based on quaternion, 

while 𝐷pos denotes the position distance between the planned 

and suggested positions. The suggested pose is selected from 

the maximum success rate distribution region and incorporates 

environmental distance weights. For flipping, the closest 

supporting wall to the initial position is chosen. For poking, the 

pose with the shortest movement distance, i.e., the nearest 

flipping pose, is selected. 𝑅col is the penalty term, representing 

the penalty score when there is an intersection between the 

planned object and 𝓟env. 

C. Adaptive Interaction Motion Planning 

The overall architecture of the proposed low-level agent is 

illustrated in Fig.5. 

Observation and Action Spaces. The observation space for 

the low-level agent includes the entire scene's point cloud, 

comprising environmental point cloud 𝓟env = {𝒑𝑖
env}𝑖=1

𝑁𝑒 , 

object point cloud 𝓟obj = {𝒑𝑖
obj

}𝑖=1
𝑁𝑜 , and the high-order agent’s 

action decision 𝑎𝑖
type

 (either "poke" or "flip"). Before each 

action, the robot's end-effector moves to a reset position that 

does not obstruct the camera’s view, acquires the observation 

point cloud, and reads the high-order agent's action decision. 

The action space is centered around the object point cloud 

𝓟obj and consists of two components: the contact position 𝒑𝑖
obj

 

of the gripper selected from 𝓟obj , and the motion direction 

𝒂dir. These parameters determine the location and manner of 

interaction between the robot and the object. The gripper first 

moves to a position at a specified normal distance from the 

target point. Then, it executes the action using a low-gain end-

effector translation controller based on the action parameters 

decided by the agent. After the interaction, the gripper returns 

to the reset position, re-observes the scene, and proceeds to the 

next cycle until the object reaches the target pose or exceeds the 

step limit. 

Model Architecture. Given the observation 𝑠 =

{𝓟env, 𝓟obj}, the low-level agent's actor network determines 

the interaction direction of the robot for each point 𝑝𝑖  in the 

object point cloud: 𝜋𝑖
low(𝑠) = 𝒂𝑖

low = {𝒂𝑖
dir ∈ ℝ3}.  The critic 

network computes the Q-value for each 𝒑𝑖: 𝑞𝑖 = 𝑄low(𝑠, 𝒂𝑖
low), 

representing the estimated return for interacting at that point 

with the action direction generated by the actor. The interaction 

method for non-grasping pose adjustments of the object is 

determined by the point with the maximum Q-value and the 

output parameters of the agent. 

As shown in Fig.5, features are first encoded from the scene 

point cloud, which includes 𝓟env and 𝓟obj, using a  point cloud 

encoder. The encoded feature vectors are then decoded by an 

actor’s action decoder, consisting of an MLP, to produce the 

action direction parameters  𝒂𝑖
dir = [𝑎𝑖

𝑥 , 𝑎𝑖
𝑦

, 𝑎𝑖
𝑧], where 𝑎𝑖

𝑥, 𝑎𝑖
𝑦

, 

and 𝑎𝑖
𝑧 represent the components of the direction unit vector. 

Using a similar architecture with independent parameters, the 

critic’s point cloud encoder extracts features from the same 

input point cloud. The critic feature vector for each point is 

combined with the action direction parameters and the high-

order agent’s action type decision. This combination is 

processed by a Q-network, which includes an MLP, to compute 

the Q-value for each point. The point with the highest Q-value 

among all object points identifies the optimal interaction 

location and direction, facilitating a single-step adjustment of 

the object's pose. 

The update rule is defined as follows: The actor's loss function 

ℒ𝜓
actor  is set to the expected Q-value of all object points 𝒑𝑖 , 

weighted by their selection probabilities  𝜇(𝒑𝑖|𝑠) . This 
formulation is similar to Eq.(3), with the distinction that: 

ℒ𝜓,𝑖
actor = −𝑄low (𝑠, 𝜋𝜓,𝑖

low(𝑠)) = −𝑄low(𝑓𝑖
low, 𝒂𝑖

dir), 

𝜇(𝒑𝑖|𝑠) = 𝜇(𝒑𝑖|𝓟
obj) = exp (𝜆𝑞𝑖) ∑ exp (𝜆𝑞𝑘)𝑁𝑜

𝑘=1⁄ , 

where 𝜆  denotes the temperature parameter utilized in the 

softmax operation, which influences the selection of interaction 

points on the object. 𝑁𝑜  represents the count of 𝓟obj , 

specifically indicating available locations for interaction. 

Additionally, the Q-function's loss ℒ𝜙,𝑖
critic  is derived from 

𝑓𝑖
low(𝑠𝑡+1)  and 𝜋𝜃,𝑖

low(𝑠𝑡+1) , following the formulation 

presented in Eq.(4). 

Reward. The goal of the low-level agent is to adjust the object 

from its current state to the target pose through the robot's 

interaction actions. Within the point cloud observation space, 

the objective is to transform the object's initial point cloud into 

the target point cloud. A "goal flow" representation is 

introduced to achieve this, which calculates the 3D vector 

difference between the target and initial points. Consequently, 

the reward function for point cloud alignment is defined as: 

𝑟 =  − ∑ ‖𝒑𝑖
′ − 𝒑𝑖‖

𝑁𝑜
𝑖=1 𝑁𝑜⁄   (7) 

where 𝒑𝑖  represents the current point, while 𝒑𝑖
′  denotes the 

target point. The point cloud of the object contains a total of 𝑁𝑜 

points. 

V. EXPERIMENTS 

To validate the effectiveness of SA-DEM, a series of 

simulations and real-world experiments are conducted in this 

section. These experiments evaluate the agents' capability to 

make autonomous decisions and execute non-grasping 
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manipulations.  

A. Simulation Experiments 

Environmental setup. The simulation environment is 

developed using Robosuite [33] and MuJoCo [34], as illustrated 

in Fig.6(a) and Fig.6(b). It includes objects randomly initialized 

in a bin on the desktop, four panels randomly arranged around 

the workspace and an end-effector.  As shown in Fig.6(c), the 

experimental setup features object models sourced from [35], 

with 20 objects selected for their varied geometries and 

suitability for non-grasping tasks. These objects are divided into 

three groups: approximate cuboid (6 objects), approximate 

cylinder (6 objects), and unseen Instances (8 objects). The 

Approximate cuboid and cylinder objects form the training set, 

while the unseen instances, which are not present during 

training, are used to evaluate the agent's generalization 

capability. 

Task setup. The non-graspable object is placed in a random 

stable SE(3) pose in the given environment. The task aims to 

determine a valid target-grasping pose and a non-grasping 

manipulation strategy, using a sequence of actions to align the 

object with the target pose. Tasks vary in difficulty and include 

a dataset with a single cuboid object, one with different types 

of cuboids, and a complete set. Each dataset is tested with rigid, 

soft, and rigid-soft hybrid properties. It is important to note that 

the simulator does not directly model object deformation. 

Instead, we weaken the moment arm of the applied forces based 

on the deformation principles outlined in Section 3. This 

reduction is controlled by a randomly generated stiffness 

coefficient specific to soft objects, while rigid objects remain 

unaffected by the applied forces. Two criteria define task 

success. First, the target pose must meet the grasping 

conditions. Second, the average distance between the adjusted 

object and the target pose point clouds must be less than 3 

centimeters. A maximum of 10 adjustment steps is allowed. 

Parameter setup. SA-DEM is built on Stable-Baselines3 

[36], with TD3 and hybrid TD3 modifications. The high-level 

and low-level agents use PointNet++ segmentation backbones 

[37] for point cloud feature extraction. Each agent's actor and 

critic networks have separate point cloud extraction modules 

with no shared weights. Temporal features for MI-EF are 

extracted using an LSTM [38]. The network architecture and 

hyperparameters are detailed in Table 1. 

Ablation and Baseline Experiments. To validate the 

effectiveness of SA-DEM's core modules and reward settings 

in the high-level agent, we designed the following algorithm 

variants for ablation experiments: 

1) Without stiffness awareness: The MI-EF module 

excludes the stiffness observation-related encoding and 

LSTM components in this variant. The actor and critic 

networks only process the concatenated features of the 

point cloud from the grasp region and the plane/wall 

observation point clouds. This variant tests the value of 

stiffness awareness in decision-making when interacting 

with the environment. 

2) Without stiffness awareness memory: The MI-EF 

module receives only point cloud observations from 

single-contact interactions in this variant. The encoded 

information from these point clouds is concatenated 

with the features of the grasp region and the plane/wall 

observation point clouds. This variant evaluates the 

effect of introducing temporal stiffness information and 

dynamic features. 

3) With discrete rewards (Without continuous 

rewards): This variant replaces the proposed 

continuous reward distribution with a discrete reward 

representation. No transition region is established 

between the success rates of the poke and flip strategies. 

Instead, the success rates are directly switched based on 

the target position. This variant assesses the advantage 

of the proposed reward representation method. 

The training curves for each method after 100k environment 

interaction steps are shown in Fig.7(d) using the complete 

object training set. The full SA-DEM method achieves a 

success rate of approximately 87%. In comparison, the 

"Without stiffness awareness" variant only reaches around 

61%, demonstrating that relying solely on visual observations 

is insufficient for generating accurate action decisions. This 

underscores the importance of stiffness awareness for effective 

high-level agent interactions with the environment. The 

"Without stiffness awareness memory" variant achieves a 

TABLE 1: Model hyperparameters. 

Hyperparameters High-level  Low-level   

Initial timesteps 5000 10000 

Batch size 128 64 

Actor update frequency 0.5 0.5 

Critic update frequency 2 2 

Temperature parameter 0.1 0.1 

Discount factor 0.99 0.99 

Learning rate 0.0001 0.0001 

  𝜅base/𝜅adj/𝜅max 0.9/0.2/0.5  

𝜎mod / 𝜎norm 10/0.5  

 

 
Fig. 6. Simulation environment and object set. (a) Basic 

layout. (b) Environmental generalization setup. (c) The 

green subset comprises approximately cuboidal objects, 

while the yellow subset consists of approximately cylindrical 

objects, together forming the training set. The orange subset 

represents unseen objects, serving as the test set. 
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success rate of about 81%, slightly lower than the full method, 

indicating that temporal stiffness perception captures additional 

stiffness information, aiding in training and decision-making. 

As for the reward function configuration, the "With discrete 

rewards" variant reaches only about 47% success, significantly 

lower than the continuous reward approach. This confirms the 

effectiveness of the proposed data-driven continuous 

distribution reward representation method, showing that 

continuous dense rewards are more conducive to training and 

faster convergence than discrete hierarchical rewards. 

Next, we assess the effectiveness of the action execution 

framework in SA-DEM’s low-level agent. The manipulation 

strategies for both our method and the designed baseline 

comparisons are described as follows: 

1) Regress per-point motion (Ours): A contact point is 

selected from the object point cloud, with each point 

containing motion parameters regressed by the model. 

Based on the position and normal of the selected point, 

the end-effector moves along the normal direction to the 

contact point. Then, using a low-gain translation 

controller, it executes the motion parameters in three 

steps, each with a 2cm stride. After each step, the end-

effector returns to a predefined starting position. 

2) Successive adhesive motion: A contact point is selected 

from the object point cloud, where each point similarly 

contains motion parameters. However, unlike our 

approach, in this baseline, the end-effector does not 

return to the initial position after each step. Instead, the 

previous step's endpoint becomes the next's starting 

point. This creates a sequence of actions where the end-

effector appears to "adhere" to the object. 

3) Regress contact motion: This baseline does not select 

contact points from the object point cloud. Instead, the 

model directly regresses 6 DoF outputs, including three 

for the contact position and three for the motion 

parameters. In each step, the end-effector moves to the 

regressed contact position, executes the motion 

parameters, and returns to the predefined initial position. 

The performance of the three methods is evaluated in mixed 

rigid-soft object manipulation tasks across three training 

scenarios: single-object interaction (rectangular box) over 500k 

environment steps, approximate cuboid objects over 1000k 

steps, and the complete training dataset over 1500k steps. The 

training curves are shown in Fig.7(a), 7(b), and 7(c), 

respectively. Results show that the "Successive adhesive 

motion" baseline struggles to learn effective action policies for 

these complex multi-step tasks. Our " Regress contact motion" 

approach demonstrates significantly better convergence and 

higher sample efficiency than the " Regress per-point motion " 

method. SA-DEM achieves success rates of 99.5%, 80.1%, and 

90.6% under the three test conditions, outperforming the 

"Regress contact motion" baseline by 26.3%, 16.8%, and 

11.9%, respectively. 

Additionally, we introduce HACman [4] into the baseline 

methods to compare performance against the relevant state-of-

the-art approach. HACman selects contact points from the point 

cloud and regresses motion parameters. Unlike our method, 

HACman operates solely as a low-level action executor, relying 

exclusively on visual perception without accounting for object 

stiffness information, and it only supports poking. 

We evaluate the success rates of HACman, "Regress contact 

motion," and SA-DEM across non-grasping tasks on four 

datasets: single-object (models trained over 500k steps), 

approximate cuboid objects (models trained over 1000k steps), 

 
Fig. 7. Quantitative results of ablation experiments and baseline comparison. For the low-level agent: (a) Training curves for 

the single-object dataset; (b) Training curves for the approximate cuboid dataset; (c) Training curves for the complete training 

dataset. (d) Training curves for the module ablation of the high-level agent. (e) Baseline results for all tasks targeting rigid 

and soft manipulations. 
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complete training dataset (models trained over 1500k steps), 

and unseen object sets (models trained over 1500k steps). Each 

dataset is tested with three sets of rigid and soft tasks, each 

randomly repeated 100 times.  

As illustrated in Fig.7(e), SA-DEM and HACman achieve 

similar success rates for rigid tasks. However, in soft tasks, our 

method significantly outperforms HACman. The lack of 

stiffness information greatly hampers the success rate in 

manipulating soft objects. For the "Regress contact motion" 

baseline, which also utilizes stiffness modality, SA-DEM 

consistently demonstrates superior performance across all 

tasks, highlighting that enhanced training efficiency improves 

manipulation outcomes. On the unseen dataset, our method 

achieves an overall success rate of 71% (approximately 80% for 

rigid objects and 62% for flexible objects). This result confirms 

that SA-DEM can effectively transfer to new manipulation 

objects under conditions of limited training data, showcasing 

good generalization capabilities. Furthermore, it outperforms 

HACman by a factor of 1.7 in overall success rate 

(approximately 82% for rigid objects and 2% for soft objects). 

These findings further validate the flexible decision-making 

and manipulation capabilities of SA-DEM, particularly 

emphasizing its robustness in tasks involving reduced applied 

torque, especially in rigid-soft coupling scenarios. 

Validation of high-level agent success rate distribution. 

The following section details the implementation of the 

proposed method for data-driven continuous distribution 

rewards and analyzes the resulting success rate distribution. 

During the training of the high-level agent, directly 

determining the success of each target pose through interactions 

with the environment would result in sparse rewards and low 

sample efficiency. A pre-constructed success rate distribution 

for each object’s target pose is employed to mitigate this. Target 

reorientation poses are uniformly sampled within the feasible 

operation space, defined as 𝑥 ∈ [−0.2, 0.2] , 𝑦 ∈ [−0.2, 0.2] , 

𝜃𝑧 ∈ [0, 2𝜋]. The sampling intervals are set as ∆(𝑥, 𝑦, 𝜃𝑧) =
 (0.04, 0.04, 𝜋 3⁄ ) , striking a balance between success rate 

prediction accuracy and data collection efficiency. 

For each sampled pose and action decision, 10 repeated 

interaction experiments are conducted, and the corresponding 

success rate is calculated. Figures 8(a) and 8(e) display the 

discrete success rate data for poke and flip manipulations on a 

rectangular box. Using interpolation, a continuous mapping 

between pose and success rate is generated. Figure 8(b) and 8(f) 

illustrate the success rate mapping for the slice corresponding 

to 𝜃𝑧 = 166.9°. 

The results indicate that poke manipulations achieve higher 

success rates at a certain distance from the bin edge. In contrast, 

flip manipulations only succeed within a limited range near the 

edge. Furthermore, the success rate of flip manipulations is 

influenced by the panel’s orientation and 𝜃𝑧. Given the strong 

consistency of the data, it is possible to infer the success rate 

distribution for any random panel based on the success rate data 

for the side panel. 

The high-level agent is trained using the reward function 

configured as described earlier. Under identical initial 

conditions, each action type is tested 200 times, and the target 

poses generated by the agent are collected. Figure 8(c) and 8(g) 

show the distribution of successful target poses in the 2D 

positional plane, with 191 data points (95.5%) for the poke 

strategy and 167 data points (83.5%) for the flip strategy. The 

results reveal that for the poke strategy, the agent 

predominantly plans target poses near the object's initial 

position, achieving object flipping with minimal movement 

cost. In contrast, for the flip strategy, the planned poses cluster 

near the side panel closest to the initial location. This indicates 

that the agent efficiently selects optimal interaction points with 

the environment, maintaining consistency in 𝜃𝑧 and minimizing 

action cost. 

Evaluation of low-level agent action performance. This 

 
Fig. 8. Success rate distribution modeling based on the data-driven continuous distribution reward function for poke (a-d) and 

flip (e-h) strategies. (a)(e) show uniformly sampled success rate data; (b)(f) display 2D position plane slices at 𝜃𝑧 = 166.9° 

from the continuous interpolated distribution; (c)(g) illustrate the decision location distribution of trained models; (d)(h) 

provide the decision states corresponding to the sampled points from the perspective of the point cloud. 
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section illustrates the action details of the low-level agent, with 

Figure 9(a) presenting video frames of interaction processes 

involving four distinct objects. The interactions include poke 

manipulations on a medicine bottle and a container, as well as 

flip manipulations on a box and a canister. The demonstrated 

actions encompass planar pushing, downward flipping, lateral 

adjustments for directional correction, and lateral lifting. The 

low-level agent utilizes real-time feedback from environmental 

observations to generate closed-loop interaction points and 

action parameters. Autonomically combining these actions 

incrementally guides the object toward the target pose. 

Figure 9(b) depicts the rationale for selecting interaction 

points on the objects and the corresponding action decisions. 

The critic score map, derived from the object’s point cloud, is 

visualized using color mapping: higher scores (indicated by 

more prominent colors) signify greater probabilities of selecting 

those contact points. The optimal contact point and its 

associated action parameters are subsequently employed for 

decision-making. In the case of the flip manipulations, the critic 

score map in Fig. 9(b-1) highlights the lower side of the bottle, 

with the action directed toward the side panel to facilitate lateral 

interaction and adjust the bottle’s orientation on the plane. 

Following this adjustment, Figure 9(b-2) highlights the top of 

the bottle, indicating an upward action to lift it. Figures 9(b-3) 

and 9(b-4) showcase two instances of downward poke 

manipulations at the object’s edge. The critic score map 

effectively reflects the agent’s predicted interaction points, 

emphasizing shared features across objects that correspond to 

successful actions. This demonstrates the agent’s ability to 

accurately predict and execute object manipulation actions to 

achieve the desired target pose. 

B. Experiments in real-world scenarios 

Platform setup: The experimental platform setup is shown in 

Fig.10(a). The UR5 robot is equipped with a GL gripper [39]. 

Three stationary Azure Kinect DK cameras capture and form 

the scene point cloud. The non-grasping manipulations are 

conducted within a fixed bin. 

Task setup: A set of objects with varying shapes, stiffness, 

surface friction, and density is selected as the manipulation 

targets, as shown in Fig.10(b). These objects include rigid items 

such as boxes and a bottle, as well as softer objects like a 

sponge, a doll, a handbag, and a packaging bag, which are 

commonly encountered in daily life. The task objective is to 

autonomously plan the target grasping pose for each object and 

perform the alignment manipulations toward the target pose. 

We relax the constraint on the 6D point cloud distance, 

considering the alignment with the vertical direction of the 

target pose as a success. Our pose adjustment aims to achieve a 

grasp-friendly pose rather than a strict pose alignment. 

Unlike the robot in the simulation environment, which moves 

from the normal of the point cloud to the contact point, the 

actions of the real robot encompass two distinct modes: for 

contact points on the object's top surface, it moves from the 

starting point to the target. In contrast, for contact points on the 

side surface, the robot first shifts to an initial position offset by 

a specified distance in the direction of relative motion. For the 

point clouds collected by the three cameras, we first perform 

coordinate alignment using the transformation matrices 

obtained from the calibration of the three camera coordinate 

systems. Then, we segment the point cloud within the bin 

container region and refine the point cloud shape matching 

using Iterative Closest Point (ICP) [40] for local refinement. 

Therefore, the alignment in the experiment is based solely on 

the shape of the point cloud without considering the matching 

of object image features. 

Experiment result: The experimental results are presented in 

Table 2. Since the initial state corresponds to a non-graspable 

pose, and the desired grasping pose is vertical, the task involves 

 
Fig. 9. Simulation frames and point cloud representations. (a) Random demonstrations of target pose alignment for non-

grasping manipulation tasks, including poke and flip manipulations. (b) Point cloud representation in random demonstrations. 

The heatmap shows the critic score map, with lighter colors indicating higher scores. The red arrow marks the highest-scoring 

action. Blue represents the target point cloud, yellow the intermediate results, and purple the final outcome. 
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6D pose adjustment in a non-planar configuration. This task 

presents significant challenges, as each object has an unseen 

shape and physical properties. Even a small error in the 

interaction can lead to substantial changes in the object’s pose. 

Examples of successful manipulations for rigid and soft objects 

are shown in Fig.10(c) and 10(d). The average success rate for 

the four relatively rigid objects is 52.5%. Among these, the 

success rates of the poke strategy for the three box-shaped 

objects are above 50%, while the success rate for the bottle is 

the lowest due to the instability of its contour and mass center, 

resulting in a high pose randomness after manipulation. For the 

four soft objects, all successful tests result from the flip 

strategy, with an average success rate of 42.5%. The success 

rate for the sponge and handbag exceeds 50%. The doll has a 

rounder contour, while the packaging bag has a high center of 

mass and a narrow base, making these two objects more 

challenging. Further comparison tests are conducted using the 

poke strategy, and the results showed that poke manipulations 

failed for all soft objects. This indicates the limitations of the 

single poke strategy for non-grasping manipulations, 

highlighting the need to consider the stiffness properties of the 

objects and utilize environmental interactions. Therefore, the 

results validate the rationality and effectiveness of the proposed 

agent, which integrates decision-making, poke strategy, and flip 

strategy. 

Ⅵ. CONCLUSION 

This study seeks to tackle a critical yet underexplored 

challenge in robotic extrinsic dexterity: the incorporation of 

object stiffness into the design of non-grasping manipulation 

strategies. We propose a novel dual-stage reinforcement 

learning framework, SA-DEM, which decomposes this task 

into decision-making and motion execution. By constructing a 

unified 3D observation space and considering the torque 

reduction effects during contact with objects of varying 

stiffness, the agent first autonomously learns to make decisions 

about interaction types. It then generates appropriate responses 

spontaneously, without relying on manually designed motion 

primitives or specific assumptions regarding contact modes. 

Experimental results in both simulation and real-world 

scenarios demonstrate our method's capability to perform 

poking actions on rigid objects using planar surfaces and flip 

actions on soft objects using environmental walls. It also 

exhibits strong generalization to unseen objects and effective 

transfer performance from simulation to reality. In simulated 

mixed rigid-soft tasks, SA-DEM achieves a success rate of 80% 

for rigid objects and 62% for soft objects. The overall success 

rate significantly surpasses the state-of-the-art method's, 

TABLE 2: Experiment results in real-world scenarios. 

Object Stiffness  Decision Count 
Success 

rate 
Total   

Box 1 Rigid Poke 8/10 80% 

52.5% 
Box 2 Rigid Poke 5/10 50% 

Box 3 Rigid Poke 6/10 60% 

Bottle Rigid Poke 2/10 20% 

Sponge Soft Flip 7/10 70% 

42.5% 

Doll Soft Flip 2/10 20% 

Handbag Soft Flip 5/10 50% 

Packaging 

bag 
Soft Flip 3/10 30% 

 

 
Fig. 10. Experimental setup in real-world scenarios. (a) The experimental platform, consisting of three cameras, one robot, 

and an environmental bin. (b) Eight objects to be manipulated, with varying properties, all being unseen objects. (c) 

Demonstrations of the high-level agent's planned target pose. The red point cloud represents the planned outcome, while the 

blue point cloud denotes the initial state. (d) The manipulation process of the low-level agent associated with c-1 to c-4. 
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yielding approximately a 1.7-fold performance improvement. 

In real-world scenarios, SA-DEM achieves an overall success 

rate of nearly 50% on unseen objects with varying stiffness, 

mass, and geometric properties, including 6D pose adjustments 

for particularly challenging shapes. 

The proposed approach offers a novel perspective on 

enhancing robotic manipulation capabilities, showcasing the 

substantial potential of non-grasping manipulation for complex 

tasks. However, this study also has certain limitations. For 

instance, the manipulation success rate for direct transfer to 

real-world scenarios still has room for improvement. Failures 

are often attributable to errors in point cloud observations, such 

as inaccuracies inherent to depth cameras and registration errors, 

which hinder the precision of contact point selection. 

Additionally, some target poses for test objects are challenging 

(e.g., circular or narrow bases), making stability difficult even 

for human manipulation. Future work will enhance the 

framework's adaptability to a more diverse range of objects and 

responsiveness to increasingly complex environments. 

 

ACKNOWLEDGMENT 

This work was supported in part by the China Postdoctoral 

Science Foundation under Grant 2024M762814;  in part by the 

National Natural Science Foundation of China through the 

Youth Program under Grant 509109-N72401.  

REFERENCES 

[1] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” 

Science, vol. 364, no. 6446, p. eaat8414, 2019. 

[2] N. C. Dafle et al., “Extrinsic dexterity: In-hand manipulation with 
external forces,” in 2014 IEEE International Conference on Robotics and 

Automation (ICRA), IEEE, 2014, pp. 1578–1585. 

[3] P. Sodhi, M. Kaess, M. Mukadam, and S. Anderson, “Learning Tactile 
Models for Factor Graph-based Estimation,” Mar. 28, 2021, arXiv: 

arXiv:2012.03768. Accessed: Jul. 30, 2024. [Online]. Available: 
http://arxiv.org/abs/2012.03768 

[4] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held, “HACMan: 

Learning hybrid actor-critic maps for 6D non-prehensile manipulation,” 
arXiv preprint arXiv:2305.03942, 2023. 

[5] W. Zhou and D. Held, “Learning to grasp the ungraspable with emergent 

extrinsic dexterity,” in Conference on Robot Learning, PMLR, 2023, pp. 
150–160. 

[6] C. Eppner and O. Brock, “Visual detection of opportunities to exploit 

contact in grasping using contextual multi-armed bandits,” in 2017 
IEEE/RSJ international conference on intelligent robots and systems 

(IROS), IEEE, 2017, pp. 273–278. 

[7] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-
reorienting using pivoting,” in 2018 IEEE International Conference on 

Robotics and Automation (ICRA), IEEE, 2018, pp. 1631–1638. 

[8] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided 
sampling-based planning for quasistatic dexterous manipulation in 2d,” 

in 2021 IEEE International Conference on Robotics and Automation 

(ICRA), IEEE, 2021, pp. 6520–6526. 
[9] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact mode guided 

motion planning for quasidynamic dexterous manipulation in 3d,” in 

2022 International Conference on Robotics and Automation (ICRA), 
IEEE, 2022, pp. 2730–2736. 

[10] C. Eppner, R. Deimel, J. Alvarez-Ruiz, M. Maertens, and O. Brock, 

“Exploitation of environmental constraints in human and robotic 

grasping,” The International Journal of Robotics Research, vol. 34, no. 

7, pp. 1021–1038, 2015. 

[11] J. Bimbo et al., “Exploiting robot hand compliance and environmental 
constraints for edge grasps,” Frontiers in Robotics and AI, vol. 6, p. 135, 

2019. 

[12] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand 

manipulation via motion cones,” The International Journal of Robotics 
Research, vol. 39, no. 2–3, pp. 163–182, 2020. 

[13] M. A. Lee et al., “Making sense of vision and touch: Learning multimodal 

representations for contact-rich tasks,” IEEE Transactions on Robotics, 
vol. 36, no. 3, pp. 582–596, 2020. 

[14] Í. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-

Hidalgo, S. Bøgh, and N. Arana-Arexolaleiba, “A review on 
reinforcement learning for contact-rich robotic manipulation tasks,” 

Robotics and Computer-Integrated Manufacturing, vol. 81, p. 102517, 

2023. 
[15] I. Akkaya et al., “Solving rubik’s cube with a robot hand,” arXiv preprint 

arXiv:1910.07113, 2019. 

[16] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object re-
orientation,” in Conference on Robot Learning, PMLR, 2022, pp. 297–

307. 

[17] H. Qi et al., “General in-hand object rotation with vision and touch,” in 
Conference on Robot Learning, PMLR, 2023, pp. 2549–2564. 

[18] C. Chi et al., “Diffusion policy: Visuomotor policy learning via action 

diffusion,” arXiv preprint arXiv:2303.04137, 2023. 
[19] S. Kim, A. Bronars, P. Patre, and A. Rodriguez, “TEXterity–Tactile 

Extrinsic deXterity: Simultaneous Tactile Estimation and Control for 

Extrinsic Dexterity,” arXiv preprint arXiv:2403.00049, 2024. 
[20] M. Bauza, A. Bronars, and A. Rodriguez, “Tac2pose: Tactile object pose 

estimation from the first touch,” The International Journal of Robotics 

Research, vol. 42, no. 13, pp. 1185–1209, 2023. 
[21] S.-M. Yang, M. Magnusson, J. A. Stork, and T. Stoyanov, “Learning 

Extrinsic Dexterity with Parameterized Manipulation Primitives,” in 

2024 IEEE International Conference on Robotics and Automation 
(ICRA), IEEE, 2024, pp. 5404–5410. 

[22] A. Ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection 

in point clouds,” The International Journal of Robotics Research, vol. 36, 
no. 13–14, pp. 1455–1473, 2017. 

[23] Y. Cho, J. Han, Y. Cho, and B. Kim, “CORN: Contact-based Object 

Representation for Nonprehensile Manipulation of General Unseen 

Objects,” arXiv preprint arXiv:2403.10760, 2024. 

[24] M. Kim, J. Han, J. Kim, and B. Kim, “Pre-and post-contact policy 

decomposition for non-prehensile manipulation with zero-shot sim-to-
real transfer,” in 2023 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS), IEEE, 2023, pp. 10644–10651. 

[25] C. Ma et al., “DexDiff: Towards Extrinsic Dexterity Manipulation of 
Ungraspable Objects in Unrestricted Environments,” arXiv preprint 

arXiv:2409.05493, 2024. 

[26] H. Zhang et al., “Reinforcement learning based pushing and grasping 
objects from ungraspable poses,” in 2023 IEEE International Conference 

on Robotics and Automation (ICRA), IEEE, 2023, pp. 3860–3866. 

[27] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory 
optimization of rigid bodies through contact,” The International Journal 

of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014. 
[28] E. Huang, X. Cheng, and M. T. Mason, “Efficient contact mode 

enumeration in 3d,” in Algorithmic Foundations of Robotics XIV: 

Proceedings of the Fourteenth Workshop on the Algorithmic Foundations 

of Robotics 14, Springer, 2021, pp. 485–501. 

[29] X. Cheng, S. Patil, Z. Temel, O. Kroemer, and M. T. Mason, “Enhancing 

Dexterity in Robotic Manipulation via Hierarchical Contact Exploration,” 
IEEE Robot. Autom. Lett., vol. 9, no. 1, pp. 390–397, Jan. 2024, doi: 

10.1109/LRA.2023.3333699. 

[30] J. Wu et al., “Spatial action maps for mobile manipulation,” arXiv 
preprint arXiv:2004.09141, 2020. 

[31] J. Liang, X. Cheng, and O. Kroemer, “Learning Preconditions of Hybrid 

Force-Velocity Controllers for Contact-Rich Manipulation,” Oct. 28, 
2022, arXiv: arXiv:2206.12728. Accessed: Sep. 20, 2024. [Online]. 

Available: http://arxiv.org/abs/2206.12728 

[32] A. X. Lee et al., “Beyond pick-and-place: Tackling robotic stacking of 
diverse shapes,” in 5th Annual Conference on Robot Learning, 2021. 

[33] Y. Zhu et al., “robosuite: A modular simulation framework and 

benchmark for robot learning,” arXiv preprint arXiv:2009.12293, 2020. 
[34] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-

based control,” in 2012 IEEE/RSJ international conference on intelligent 

robots and systems, IEEE, 2012, pp. 5026–5033. 
[35] W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion: 

Object-centric diffusion for semantic rearrangement of novel objects,” in 

Workshop on Language and Robotics at CoRL 2022, 2022. 

Page 13 of 15 T-ASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 

 

 
[36] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. 

Dormann, “Stable-baselines3: Reliable reinforcement learning 
implementations,” Journal of Machine Learning Research, vol. 22, no. 

268, pp. 1–8, 2021. 

[37] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical 
feature learning on point sets in a metric space,” Advances in neural 

information processing systems, vol. 30, 2017. 

[38] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: 
LSTM cells and network architectures,” Neural computation, vol. 31, no. 

7, pp. 1235–1270, 2019. 

[39] J. Li, K. Zhu, G. Lu, I.-M. Chen, and H. Dong, “Construction of a 
Multiple-DOF Underactuated Gripper with Force-Sensing via Deep 

Learning,” Robotics: Science and Systems, 2024, [Online]. Available: 

https://api.semanticscholar.org/CorpusID:272560240 
[40] J. Zhang, Y. Yao, and B. Deng, “Fast and robust iterative closest point,” 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

44, no. 7, pp. 3450–3466, 2021. 

 

 
Yanzhe Wang received the B.S. degree in 

vehicle engineering from Jilin University, 

Changchun, China, in 2017 and obtained  

Ph.D. degree at the State Key Laboratory of 

Fluid Power and Mechatronic Systems, 

School of Mechanical Engineering, Zhejiang 

University, Hangzhou, China 2023. He is 

currently a post-doctoral fellow at Grasp Lab, 

Institute of Aerospace Manufacturing 

Engineering, School of Mechanical 

Engineering, Zhejiang University. His 

current research interests include robotic motion planning, multimodal 

perception and manipulation . 

 

Wei Yu received the B.E. degree in robotics 

engineering from Zhejiang University, 

Hangzhou, China, in 2024. He is currently 

working toward the M.S. degree in 

mechanical engineering with the Zhejiang 

University, Hangzhou, China. His research 

interests include robot visual perception for 

grasping and manipulation, and equivariant 

learning.  

 

 

 

Hao Wu received B.E. degree in Mechanical 

Engineering from Zhejiang University in 

2024. He is currently working with the Grasp 

Lab, Zhejiang University, focusing on 

mechanical design, soft robotics, and 

multimodal tactile perception.  

 

 

 

 

 

 

Haotian Guo received the B.S. degree in 

Mechatronics from Katholieke Universiteit 

Leuven, Leuven, Belgium, in 2020, and the 

research-based M.S. degree in Biomedical 

Engineering from National Unviersity of 

Singapore, Singapore, in 2023. Since then, 

he has been with the Grasp Lab, Zhejiang 

Univeristy, China, focusing on mechanical 

design, machine intelligence and multi-

modal perception.  

Huixu Dong (S’17–M’18) received the 

B.Sc degree in mechatronics engineering 

from Harbin Institute of Technology in 

China, in 2013 and obtained  Ph.D. degree at 

Robotics Research Centre of Nanyang 

Technological University, Singapore 2018. 

He was a post-doctoral fellow in Robotics 

Institute of Carnegie Mellon University and 

National University of Singapore. From 

2022, he is a New Hundred-Talent Program 

faculty, directing Grasp Lab at Zhejiang 

University, China.  He is an associate editor of IEEE Robotics and 

Automation Letter (IEEE RA-L), IEEE Transactions on Automation 

Science and Engineering (IEEE T-ASE), ICRA2023/2024/2025, 

IROS2022/2023/2024/2025 and AIM2022/2023/2024. His current 

research interests include robotic perception and manipulation in 

unstructured environments, robotic gripper/hand.  

 

 

 

Page 14 of 15T-ASE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


