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Abstract 16 

Integrating tactile sensing into soft grippers holds great promise for safer robotic grasping and enhanced 17 

human-robot interactions. However, achieving multimodal, high-resolution sensing remains a significant 18 

challenge. While existing visual-tactile sensors offer unparalleled spatial resolution at an affordable cost, 19 

they rely on rigid structures to stabilize optical paths, hindering non-planar contact perception and violating 20 

the inherent adaptability of soft grippers. To relieve all relevant research gaps, we introduce FlexiRay, a 21 

novel soft gripper combining visual-tactile sensing with the bio-inspired Finray Effect, characterised with 22 
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low cost, high compliance, dynamic sensory coverage. Combining a flexible substrate, adaptive 23 

illumination, and temperature-sensitive materials, FlexiRay replicates five core human tactile modalities of 24 

seven. A novel multi-mirror optical system, optimized for high coverage despite arbitrary dynamic 25 

deformations, enables consistent perception with just a single camera.  Furthermore, employing a human-26 

like multimodal deep learning framework to decouple contact forces, position, texture, temperature, and 27 

proprioception, FlexiRay achieves a force sensing accuracy of 0.14 N, a proprioception accuracy of 0.17 28 

mm, and retains 90% effective coverage across dynamic interactions.  Flexiray’s structural compliance and 29 

multimodal sensing capabilities promote exceptional recognition of non-planar objects interactions and 30 

autonomous human-robot interaction, showcasing significant potential for safer and more intelligent service 31 

robotics. 32 

Introduction 33 

The human tactile system possesses exceptionally complex perceptual mechanisms, consisting of three 34 

principal sensory systems: the cutaneous, kinesthetic, and haptic systems1. These systems enable the human 35 

hand to perceive seven key modalities, namely pressure, contact localization, texture, temperature, vibration, 36 

proprioception, and pain2. Together, they allow humans to perform various intricate and precise tasks3. 37 

Translating this exceptional sensory ability to robots brings about significant benefits, yet significant 38 

challenges1,4. Over the past three decades, researchers have explored nearly all forms of sensing, such as 39 

resistive5,6, magnetic7, pressure-sensitive8,9, capacitive6, waveguide-based10,11, acoustic12, and thermal 40 

sensing13 et al. A special focus has been placed on the development of tactile sensing in soft robotic 41 

grippers10,12, aiming to enable more dexterous and safer environmental interactions via the combination of 42 

structural adaptivity and tactile perception. Despite substantial advancements, achieving large-area, high-43 

resolution, and multimodal tactile sensing remains a tremendous challenge. This can be primarily ascribed 44 

to two factors: the high production cost of taxel-based measurement methods5 and the limitations in spatial 45 

resolution of data-driven computational sensors11–14. Therefore, existing designs oftern struggle in the 46 
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dilemma among resolution, coverage, cost-effectiveness, and multimodal sensing capablities. A 47 

comprehensive, human-like tactile perception solution remains an elusive goal. 48 

Visual-tactile sensors (VTS) have emerged as a promising solution to address these challenges by 49 

leveraging metal-oxide-semiconductor (CMOS) optical arrays to convert multimodal tactile information 50 

into high-resolution, pixel-level images15–19, thereby enabling insights into interactions such as pressure16,20  51 

and texture21,22. Most existing VTS systems require stable optical paths to avoid occlusion and perception 52 

disturbances, which results in bulky designs and a heavy reliance on rigid structures21,23–28. This rigidity 53 

leads to a fixed sensing coverage, presenting significant challenges for integrating VTS with flexible 54 

grippers, as it conflicts with the compliance and flexibility inherent to soft robotic systems. Although some 55 

studies have achieved integrated robotic finger designs through optical path optimization28,29 or camera 56 

arrangement adjustments24,26,29, these grippers lack the structural compliance necessary for safe interaction. 57 

In particular, their reliance on planar contact information significantly limits their perceptual capabilities 58 

on non-planar surfaces, reducing their versatility and adaptability in complex environments. 59 

Bio-inspired Finray Effect (FRE) soft grippers provide an elegant solution for grasping objects of various 60 

shapes through adaptive enveloping, leveraging passive structural deformation to ensure safe interactions30. 61 

Integrating VTS with compliant FRE grippers partially mitigates the inherent compliance limitations of 62 

existing VTS31,32. However, current VTS systems prove inadequate for meeting the demands of broader 63 

and safer soft robotic interactions, particularly under more significant structural deformations. Some studies 64 

focus on enhancing the perceptual coverage and providing moderate flexibility, such as segmenting 65 

multiple cameras to adapt to structural deformations4, using a single rigid curved mirror29, or replacing rigid 66 

acrylic with thin, flexible mylar at the front contact surface to enhance surface deformation31,32. However, 67 

to avoid visual occlusion and maintain the optical path under large deformations, the back structures of 68 

these designs remain somewhat rigid, which undermines the key advantage of FRE’s natural compliance 69 

and fails to address the inherent limitations of current VTS designs. The challenge persists in systematically 70 
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integrating VTS with flexible robotic grippers to ensure high-resolution, large-area multimodal tactile 71 

perception during compliant interactions. 72 

In this paper, we report FlexiRay, a tactile-integrated soft robotic gripper inspired by human multimodal 73 

touch, capable of simultaneously perceiving contact pressure, localization, texture, temperature, and 74 

proprioception (Fig. 1). By strategically integrating compliant FRE grippers with VTS, FlexiRay achieves 75 

a sizeable sensory area of 1560 mm², maintaining an average effective coverage of 87.2% under arbitrary 76 

dynamic deformations. It also achieves an overall force accuracy of 0.14 N and a spatial proprioception 77 

accuracy of 0.17 mm. FlexiRay demonstrates unparalleled structural compliance, with a deformation 78 

capacity over 400% greater than existing compliant VTS of the same type 22 under the identical load.  Table 79 

1 provides a detailed comparison of FlexiRay with representative state-of-the-art VTS. We emphasize the 80 

relevant differences and recommend that readers refer to and examine them more thoroughly. 81 

The following contributions drive these advancements: First, we propose a novel integration design of VTS 82 

and the FRE soft gripper, realizing a compact, human-inspired tactile perception modality with a multi-83 

layered structure that balances compliance and sensory performance. Second, a new flexible VTS substrate 84 

architecture is developed, combining integrated manufacturing processes with the FRE base structure, a 85 

polydimethylsiloxane(PDMS)-based contact substrate, and a flexible silicone tactile material. Temperature-86 

sensitive materials are also incorporated to further enhance multimodal sensing capabilities. Third, a layout 87 

optimization method for the inside optical sensing system, based on Covariance Matrix Adaptation 88 

Evolution Strategy (CMA-ES), is proposed.  This method optimizes the layout of the single camera and 89 

multiple mirrors via leveraging structural deformation collected during physical interactions, aiming to 90 

maximize dynamic perceptual coverage during deformation. Notably, it cleverly transforms optical 91 

interference from a limiting factor into a functional design element, with discrete mirrors ensuring stable 92 

and continuous sensing during dynamic deformation without compromising flexibility. Finally, FlexiRay 93 

showcases its excellent ability to classify complex, non-flat objects, such as textured perception balls, 94 

through human-inspired multimodal sensing and deep learning models. In a handover task, it adeptly 95 
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distinguishes cups of varying temperatures, secures a stable grasp with minimal force that prevents slippery 96 

or crushing, and intuitively releases objects upon detecting human interaction. These findings highlight the 97 

potential of the proposed FlexiRay, paving the way for intelligent robotic systems in dynamic, real-world 98 

applications such as housekeeping. 99 

Fig. 1: FlexiRay: A flexible Finray Effect gripper enables human-like multi-modal tactile and 100 

proprioception perception. 101 

 102 

a FlexiRay incorporates five of the seven sensory modalities found in the human hand. Leveraging the bio-103 

inspired Finray Effect design, it features exceptional structural adaptability. b The kinesthetic system in the 104 

human hand relays real-time hand postures and motion information via muscles, tendons, and joints, 105 

supporting precise tasks like delicate grasping. The cutaneous system, with widely distributed receptors 106 

such as Pacinian corpuscles (vibration), Merkel's discs (texture), and Ruffini endings (pressure), provides 107 

essential information about object properties and interaction dynamics (e.g., slippage). The haptic system 108 

integrates spatial and temporal data from both sensory streams to interpret complex contact characteristics, 109 

enabling adaptive and dexterous actions. c FlexiRay innovatively integrates bio-inspired skin with a tendon-110 

like skeleton, seamlessly integrating proprioception with multimodal tactile sensing. 111 

 112 
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Table 1 Comparison between the state-of-the-art VTS systems and FlexiRay. 113 

Sensor Principle System Rigidity 
Area 

(mm2) 
Model Modality 

Force 

Error 

(N) 

Proprioception 

Error 

(mm) 

Non-planar 

Adaptability 

GelSight21 Camera Rigid 250 CNN Force, Texture FN: ~0.67 — 

Limited contact 

area 

GelSight36026 Camera Rigid — MLP Texture — — 

Digit27 Camera Rigid 304 ResNet Texture — — 

Gelslim28 Camera Rigid 1200 iFEM Force, Texture FN: ~0.32 — 

GelSight 

Wedge33 

Camera + 

Single-mirror 
Rigid 768 MLP Texture — — 

Insight34 Camera  
Semi-compliant 

(Hollow skeleton) 
4,800 ResNet Force, Texture 0.03 — 

GelSight 

Svelte29 

Camera + 

Single-mirror 

Semi-compliant 

(Soft front beam) 
~1895 CNN 

Bend/ Twist, 

Texture 

T𝐵: ~9.4 

Nmm/T𝑇: 

~7.6 Nmm 

— 

GelSight 

Baby Fin 

Ray22 

Camera + 

Single-mirror 

Compliant (FRE 

with rigid 

connections) 

990 ResNet Texture — — 

Sacrifice 

structural 

compliance to 

maintain stable 

optical paths 

GelFlex4 Multi-Cameras 
Highly flexible 

(Serial Joints) 
— LeNet 

Proprioception, 

Texture 
— ~0.77 

For each 

phalange, limited 

contact area 

Liu et al.35 Camera 

Highly flexible 

(Compliant 

Spatial Truss) 

 

— MLP 
Force, 

Proprioception 
FN: ~0.25 ~1.18 

Only perceive 

contact at the 

beams 

FlexiRay 

(Ours) 

Camera + 

Multi-mirrors 

Highly flexible 

(FRE with 

flexible 

connections) 

1560 
PP-LiteSeg+ 

ResNet 

Force, 

Location, 

Proprioception, 

Texture, 

Temperature 

FN: ~0.14 ~0.17 

Average 

coverage of 

87.2% under 

different 

deformations 

114 



7 
 

Results  115 

Working principles of FlexiRay 116 

The design of proposed Tactile-integrated FlexiRay is illustrated in Fig. 2a. Inspired by the hierarchical 117 

structure of the human hand, this design integrates both the perceptual and structural elements to address 118 

the gap in visual-tactile sensing and soft gripper integration. The system is primarily composed of a 119 

compliant finger framework, an optical system, and a tactile sensing pad. The compliant finger framework 120 

includes a back beam, a front beam, and side beams. The back and front beams, made of TPU material, 121 

provide elasticity similar to the tendons in the human hand, maintaining structural stability while 122 

transmitting forces and deformations. The rigid side beams act as the bones of the hand, being hinged to 123 

the ends of the back and front beams to provide variable joints. The optical system includes a camera for 124 

image capture, multi-segment reflective mirrors for enhancing the camera's field of view (FOV), and 125 

flexible LED light strips for illumination. The tactile sensing pad consists of a PDMS-based substrate, an 126 

elastic silicone layer, a reflective layer, and a temperature-sensing layer, as shown in Fig. 2b. The PDMS 127 

substrate provides flexible support without compromising compliance (Fig. 2d), while the low-hardness 128 

transparent silicone elastic layer is used to enable texture mapping (Fig. 2c). The external silicone reflective 129 

layer, infused with aluminum, enhances the capability to map of contact textures. The outermost layer is a 130 

silicone temperature-sensing layer, incorporating thermochromic materials, which can be captured by the 131 

camera through marker holes in the reflective layer. Thus, FlexiRay exhibits sensitivity to external physical 132 

contacts and temperature stimuli, similar to the mechanoreceptors and thermoreceptors in human skin. 133 
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Fig. 2: Illustration of the integrated design and layout optimization of FlexiRay. 134 

 135 

a Exploded view of FlexiRay. b Exploded view of the tactile sensing pad. c Casting of the elastic layer. d 136 

Casting of the PDMS substrate. e Schematic diagram of the inside optical sensing system layout 137 

optimization method. f The optimization convergence curve of average coverage loss. 138 

 139 

The key challenge in compatibility between VTS and flexible structures lies in the significant deformation 140 

of the soft robotic hand during the interaction, which restricts the camera’s FOV. Rather than limiting the 141 

flexibility of the hand, we address this issue through systematic optimization, incorporating a multi-mirror 142 

configuration to transform the unwanted deformation into a functionaln advantage. As shown in Fig. 2e, 143 
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each mirror is independently attached to the back beam, passively altering the direction of the camera light 144 

path. This allows the discrete capture of perception regions that the camera’s FOV does not cover. 145 

Combining the views from multiple mirrors achieves continuous coverage of a large perception area under 146 

dynamic loading conditions. To ensure optimal compliance adaptation, the optical system layout is modeled 147 

as a 2D geometric parameter optimization problem in the lateral cross-section. The optimization objective 148 

is maximizing the coverage of the tactile sensing regions captured by direct camera views and mirror 149 

reflections. The optimization parameters include the camera’s position along the bottom beam baseline, its 150 

shooting angle, the length of each mirror, as well as the distance and angle of each mirror relative to the 151 

back beam. CMA-ES is used as the solving tool. Deformation data for the back and front beam joint nodes 152 

under different loads are collected to serve as the prior information. This optimization process essentially 153 

aims to find the layout parameters that maximize the camera's FOV coverage across various deformations, 154 

leveraging the passive FOV reconstruction capability of multiple mirrors to enhance the camera’s 155 

perception of blind regions in deformed views. The convergence curve of the coverage loss during the 156 

optimization process is shown in Fig. 2f. 157 

To achieve multi-modal perception in flexible 3D space, we developed a series of deep learning models 158 

that decouple perception tasks and allocate them to specialized models. This approach effectively addresses 159 

the challenging spatial deformation coupling between the flexible base and the contact area during 160 

interactions. Additionally, combining these sub-models enables the solution of more complex real-world 161 

tasks. First, we developed an image region extraction model based on the PP-LiteSeg model (Fig. 3a). This 162 

lightweight semantic segmentation model helps distinguish contact information into cutaneous and 163 

kinesthetic systems,  segmenting the front beam skeleton, the front beam interaction region (direct 164 

perception), the mirror region (reflective perception), and the local contact region, which is a preprocessing 165 

step to enhance the quality of subsequent tasks. Next, a proprioception model based on the ResNet50 166 

backbone is implemented (Fig. 3b), with the segmented images of the front beam skeleton and the sensing 167 

region as input. This model estimates the normal contact force, the 3D position of the contact point relative 168 
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to its reference frame, and the side beam node positions, using dedicated heads for force, position, and node 169 

estimation. Furthermore, a texture recognition model is constructed using the ResNet50 backbone (Fig. 3d), 170 

which takes the sensing region image as input and classifies the contact texture through a classification 171 

head. Additionally, a temperature sensing model (Fig. 3c) is developed, which utilizes the color features in 172 

the markers of the local contact region image to provide contact temperature information. 173 

Figure 3e illustrates the estimation of normal contact force for 1000 different contact positions and loading 174 

conditions. The x-axis represents the ground truth forces, while the y-axis represents the estimated forces. 175 

The red dashed line indicates the ideal perfect match line. The root mean square error (RMSE) of the 176 

predicted forces is 0.135 N, with a correlation coefficient of 0.997. These results indicate that the model's 177 

estimated forces are highly consistent with the actual measured values, demonstrating high accuracy in 178 

force perception. Figure 3f shows the distribution of absolute errors for the estimated contact positions in 179 

3D space under the same 1000 loading conditions. Scatter points closer to the origin represent more minor 180 

errors. Statistical results reveal an average error of 0.81 mm and a standard deviation of 0.38 mm, validating 181 

the model's good accuracy and stability in estimating contact positions. For the node positions that 182 

characterize the hand configuration, a box plot of the positioning errors for the 14 nodes of the FlexiRay 183 

under the same 1000 loading conditions is presented in Fig. 3g. The average positioning error for all nodes 184 

is approximately 0.17 mm, with an average standard deviation of 0.10 mm, indicating the model's good 185 

positioning accuracy and robustness. To evaluate the proprioception accuracy during continuous interaction, 186 

tests are conducted in which the contact depth is gradually increased from a randomly initialized position 187 

to the target load. Figure 3h demonstrates a comparison between the actual measurement data and estimated 188 

results for normal contact force and depth across ten repeated random trials. The results reflect that the 189 

model maintains high accuracy and stability in proprioception under dynamic continuous prediction. 190 



11 
 

Fig. 3: Learning-based multi-modal perception pipeline and proprioception accuracy analysis. 191 

 192 

a Semantic segmentation model is employed to segment the front beam skeleton, perception region, and 193 

contact region. b Sub-model for sensing normal contact force, position, and proprioception deformation. c 194 

Color mapping model for temperature sensing. d Texture recognition model for tactile-based object 195 

classification. e Accuracy analysis of normal contact force estimation under 1000 varying loading trials. f 196 
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Absolute error distribution of contact position prediction under 1000 varying loading trials. g Box plot of 197 

positioning errors for joint nodes under 1000 varying loading trials. h Continuous estimation of normal 198 

contact force and depth under 10 random tests. "Est." refers to the estimated data, and "GT" refers to the 199 

ground truth data. 200 

 201 

To further validatethe multi-modal perception performance of Flexiray in practical applications, three 202 

experiments are conducted, respectively.  Firstly, we demonstrate the proposed FlexiRay is able to perform 203 

compliant force-close-loop grasping on objects, especially soft and fragile objects, such as eggs, cookies, 204 

and bread. Figure 4a presents the estimated gripping force collected during the grasping processes. In 205 

particular, the force thresholds are roughly set according to their weights, which are approximately 1 N for 206 

the egg (44g), 0.2 N for the cookie (~10g), and 0.48 N for the bread (20g). The results indicate that Flexiray 207 

can sense subtle contact forces provide stable force estimization regardless of structural deformation 208 

facilitating more precise and safer interactions. Secondly, improved compliance, large coverage and precise 209 

proprioception of  FlexiRay enable it to efficiently and accurate reconstruct the surface shape of a grasped 210 

object with fewer attempts, exemplified with a cone-shaped vase. Specifically, the Flexiray gripper 211 

performs adaptive gripping at equal height intervals from the bottom to the top of the vase, capturing tactile 212 

images during stable gripping (Fig. 4b). Using the proprioception model, the positions of the nodes on both 213 

sides of Flexiray are estimated and mapped into three-dimensional space, based on which continuous curves 214 

of the beam skeleton are generated through spline interpolation. Further surface interpolation enables the 215 

reconstruction of the sensing pad (Fig. 4c). The contact regions extracted from the reconstructed surface 216 

reveal local geometric features of the grasped object. A total of seven different gripping positions are 217 

recorded during this experiment, as shown in Fig. 4d. By integrating local shape information from various 218 

sensing areas, Flexiray demonstrates comprehensive capabilities for object shape analysis, as depicted in 219 

Fig. 4e. We designed the last validation experiment of FlexiRay’s  excellent contact localization capability 220 

using the pen-nib's position collected by visual motion capture system (VICON) as ground truth 221 
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measurement. As shown in Fig. 4f, an operator holding the pen-nib draws a trajectory of “8” on the 222 

FlexiRay’s soft sensing pad and the contact localization model provide estimated contact information 223 

throughout dynamic interactions. Figure 4g compares the predicted and actual trajectories, while Figure 4h 224 

displays the prediction errors, with an average localization error of 1.85 mm. In summary, these results 225 

highlight Flexiray's precise multi-modal perception and sensitivity thgoughout dynamic interactions. 226 

Fig. 4: Experiments on gripping force estimation, shape reconstruction, and contact trajectory 227 

tracking utilizing the proposed framework. 228 

 229 
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a Dynamic force estimation for enveloping grasps on eggs, cookies, and bread. b Seven gripping and 230 

releasing actions on a vase at varying heights, yielding tactile images from both fingers. c Estimation of the 231 

sensing pad surface through interpolation of node positions from both sides of Flexiray. The color mapping 232 

reflects the distance from the vase surface. d Reconstruction results of the sensing pad at seven different 233 

gripping perception positions. e Estimated contact points from the reconstructed sensing pad, corresponding 234 

to the local shape of the vase. f Handwritten digit "8" on the sensing pad, predicting the trajectory of contact 235 

points. g Comparison of predicted and actual trajectories, with actual data collected from a visual motion 236 

capture system that tracks the stylus. h Localization error for each contact point. 237 

 238 

Texture detection performance and perceptual coverage  239 

To assess the texture detection performance of FlexiRay, a series of large curved or wide-area gripped 240 

objects are selected for testing. These objects include tools such as screwdrivers, hot air guns, wire strippers, 241 

and scissors. Additionally, curved items of various sizes and shapes, such as solder, bottle caps, vases, pen 242 

holders, clips, and mice, are also tested. A two-finger gripper composed of FlexiRay is mounted on a UR5e 243 

robotic arm to perform natural grasping experiments and capture texture images without external 244 

interference. Several typical demonstrations are shown in Fig. 5a, with the complete set provided in the 245 

Supplementary Materials. The results demonstrate that FlexiRay not only conforms seamlessly to and wraps 246 

around large curved objects but also accurately captures the surface contours and geometric details during 247 

flexible deformations. This showcases the extensive tactile perception capability of FlexiRay, which is not 248 

available in current VTS technologies. 249 

The practical effect of the multi-mirror configuration on FOV extension is evaluated using the 3D-printed 250 

text ring shown in Fig. 5b. The ring has an outer diameter of 68 mm, a font height of 1.5 mm, and a line 251 

width of 1 mm. As shown in the internal view in Fig. 5c, under large deformations, the front beam obstructs 252 

the camera's capture of the fingertip region. However, by incorporating mirror-reflective areas, FlexiRay is 253 
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able to capture the occluded textures, thus providing a more complete perceptual field. Specifically, the 254 

direct perception area captures "RASPLA," while the reflective perception area captures "ZJUG," forming 255 

a continuous texture pattern "ZJUGRASPLA." 256 

Fig. 5: Texture detection performance and perceptual coverage of FlexiRay. 257 

 258 

a Raw internal images captured while gripping various objects. b 3D-printed text ring. c Internal raw image 259 

of the text ring grip, illustrating texture details captured by both direct and reflective sensing. d Distribution 260 

of perceptual coverage across 200 random deformation tests under varying loads. e Continuous alphabetic 261 

markings indicate the visible areas during the gripping of rings with different diameters, showing a 262 
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demonstration of the 80mm diameter ring. (Further demonstrations are provided in the Supplementary 263 

Materials.) 264 

 265 

The perceptual coverage under different deformations is further quantified through both simulation and 266 

physical experiments. The simulation is conducted based on the collected hand configuration data at 200 267 

random contact positions and loads. The camera's FOV is uniformly discretized into 300 rays in a 2D plane, 268 

and the coverage of each ray on the contact area is calculated, including both direct incidence and mirror-269 

reflected coverage. The contact area is discretized into 100 target points. Considering the varying 270 

propagation distance 𝑙𝑐  of each ray, the coverage radius of a single ray is defined as 𝑅 =271 

𝑙𝑐√2(1 − cos ∆𝜃) , where ∆𝜃 is the angle between two adjacent rays. The perceptual coverage is assessed 272 

by calculating the proportion of target points covered by each ray. The experimental results, shown in Fig. 273 

5d, indicate that the average coverage of the contact area in 200 random tests is 87.2%, with most of the 274 

coverage concentrated around 90%. Even under extreme deformations, the perceptual coverage remained 275 

above 70.0%. Additionally, for ring-shaped grasps with diameters of 50, 60, 70, and 80 mm, continuous 276 

alphabetic markers on the perceptual area visually demonstrate the variation in coverage under different 277 

deformations. Figure 5e shows the results for the 80mm diameter, with other results provided in the 278 

Supplementary Materials. These results confirm the effectiveness of the designed direct and reflective 279 

sensing strategy, along with the optimization method. 280 

Texture-based ball classification 281 

To demonstrate the texture recognition performance of FlexiRay, eight perception balls with different 282 

surface textures are selected as classification targets. For each category, 80 randomly collected tactile 283 

images of stable grasps are gathered, resulting in a total of 640 samples. The dataset is then divided into 284 

training and validation sets in a 4:1 ratio. To highlight the advantages of FlexiRay’s large-area flexible 285 

sensing capability, the commercial GelSight mini is used as a benchmark for comparison. The GelSight 286 
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mini also collects 640 samples, and the same training process and model parameters are applied. The 287 

training results showed that FlexiRay's classification model achieved an accuracy of 95.83% on the 288 

validation set, outperforming GelSight mini, which achieved an accuracy of 94.17%. 289 

Fig. 6: Tactile-based ball classification experiment process and results. 290 

 291 

a Confusion matrices for the test results of GelSight mini and FlexiRay. b The comparison of perception 292 

modes and coverage states between GelSight mini and FlexiRay. c Workflow for ball sorting and tactile 293 

perception classification. d Raw tactile images of various ball types. 294 

To evaluate the accuracy of the trained models, both grippers are randomly tasked with grasping each ball 295 

15 times, resulting in two test sets of 120 samples. The recognition results are presented in the confusion 296 
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matrix shown in Fig. 6a. FlexiRay achieves an average success rate of 88.3%, with a perfect recognition 297 

accuracy of 100% for the green and pink balls. However, the accuracy for the cyan ball is the lowest at 298 

73.3%. Some cyan ball samples are misclassified as the magenta ball, likely due to the similarity in the 299 

tactile image features at the edges of both balls. In comparison, GelSight mini achieves an average success 300 

rate of 84.2%, 4.1% lower than FlexiRay’s performance. Its accuracy for the magenta ball is even lower, 301 

reaching only 46.7%, which is half the success rate of FlexiRay. Figure 6b clearly illustrates the tactile 302 

sensing differences between the two sensors during grasping. FlexiRay’s sensing area (1560 mm²) is 5.9 303 

times larger than that of GelSight mini (265.98 mm²), and it is also capable of capturing non-planar contact 304 

features. This comparison highlights the advantages of FlexiRay, where its larger sensing area and superior 305 

compliance allow it to capture more detailed tactile information in a single grasp, contributing to improved 306 

recognition accuracy. 307 

A robot ball sorting task is performed using the trained classification model, as shown in Fig. 6c. During 308 

the experiment, balls of random types are placed at the grasping position. The robot relies solely on tactile 309 

modality to perceive the surface textures of the balls and sort them into the corresponding positions based 310 

on the recognition results. Figure 6d presents additional tactile images captured during the sorting process 311 

for each ball. The gripper’s performance in this classification task reflects the overall compliance and 312 

stability of the FlexiRay, enabling it to adapt to the shape and texture of various complex surfaces. Moreover, 313 

the robot is able to accurately classify the balls based exclusively on tactile perception with FlexiRay, 314 

highlighting the significance of tactile modality in precise grasping and manipulation. 315 

Temperature-aware safe human-robot cup transferring 316 

Humans possess rich sensory capabilities that enable stable and safe interactions. Take cup transfer as an 317 

example, using thermoreceptors in the skin, humans can detect thermal stimuli and differentiate between 318 

various temperatures. Concurrently, their tactile perception allows them to apply appropriate gripping force 319 

to prevent slipping while recognizing external contact states to ensure a successful transfer.Drawing 320 
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inspiration from these human capabilities, we demonstrate the FlexiRay’s ability to replicate similar sensory 321 

functions. In this scenario, the robot assists in selecting a cup at the desired temperature and facilitates its 322 

handover to a human. The experiment focuses on assessing FlexiRay’s temperature perception and tactile 323 

feedback mechanisms, investigating how temperature sensing identifies target objects and how tactile 324 

feedback controls release timing to enable efficient and safe interactions. The experimental procedure is 325 

outlined as follows: 326 

• Tactile image acquisition of water cups: At the start of the experiment, three cups of water are placed 327 

on a table: hot water (80°C), cold water (4°C), and room temperature water (24°C). The cups are 328 

unmarked, and their temperatures cannot be visually distinguished without physical contact. The robot 329 

grasps each of the three cups while capturing sensing images from FlexiRay. 330 

• Temperature perception and recognition: The contact area of each cup is segmented, and the marker 331 

pixels within this region are extracted to compute the average RGB values. The temperature 332 

recognition model employs a dual fully connected layer architecture with an input dimension of 333 

256×256, producing output labels to classify the water as hot, cold, or at an optimal temperature. The 334 

perception process is maintained for a sufficient duration to allow heat transfer to stabilize, ensuring a 335 

reliable temperature modality image.     336 

• Cup transfer and release triggering: During the cup transfer process, when a human hand contacts 337 

the cup and attempts to take it from the robot’s grasp, a sliding signal is generated in the tactile image. 338 

FlexiRay detects the slip amount in real-time at the contact area. Once predefined conditions are met, 339 

the release mechanism is activated, automatically loosening the gripper to allow the human to safely 340 

take the cup. 341 

The tactile image frames and corresponding RGB color changes throughout the experiment are shown in 342 

Fig. 7a and Fig. 7b. The results indicate that the robot accurately recognizes the temperature of the water 343 

cups in a dynamic environment and successfully delivers the appropriate cup based on the human’s 344 

preference. During the interaction, FlexiRay reliably detects the sliding signals triggered by human contact 345 
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and releases the cup at the optimal moment (Fig. 7c and Fig. 7d). In repeated trials, the robot successfully 346 

completed the cup transferring and released actions without any incidents of dropping the cup or misjudging 347 

the temperature, demonstrating the system’s robustness and reliability. This experiment reveals the 348 

integrated application of the flexible, large-area VTS developed in this study, highlighting its potential for 349 

multimodal perception. It illustrates the multidimensional intelligence of robots in perception, action, and 350 

human-robot interaction, with promising applications in more complex tasks such as elderly caregiving and 351 

handling objects in household environments. 352 

Fig. 7: Tactile temperature sensing and sliding detection for human-robot cup interaction. 353 

 354 

a Raw tactile images. b Changes in the RGB values of tactile perception area markers under different 355 

temperature contacts. c Robotic cup grasping and temperature sensing process. d Sliding signal detection. 356 
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Discussion  357 

This study presents a novel VTS-integrated flexible robotic gripper, Tactile-integrated FlexiRay, inspired 358 

by human tactile modalities and the FinRay effect. The gripper effectively combines enhanced structural 359 

compliance with advanced multimodal sensing capabilities, successfully realizing five out of the seven 360 

primary human tactile modalities, including contact force, location, texture, temperature, and 361 

proprioception, excluding pain and vibration. Specifically, the normal force estimation accuracy reaches 362 

0.14 N, and the spatial proprioception accuracy is 0.17 mm. Through strategic structural design and 363 

optimization, FlexiRay demonstrates strong resistance to visual interference even under large deformations. 364 

The average effective sensing coverage of the tactile sensing pad across different deformation states is 365 

87.2%, with over 70% maintained during large deformations. To address the visual occlusion gaps that 366 

occur during large deformations, we do not limit the compliance of the finger to maintain the optical path. 367 

Instead, we treat deformation-induced optical path disturbances as key design parameters. The structure 368 

innovatively designs a segmented mirror array and proposes a method for optimizing the internal optical 369 

system layout. We characterize the force-deformation patterns of the FRE fingers under different loading 370 

conditions in a physical environment. These patterns serve as the basis for determining the optimal position 371 

and orientation of the mirrors. This method ensures consistent image acquisition through passively 372 

controlled mirror reflections, even under substantial deformation. Therefore, FlexiRay excels at grasping 373 

irregular, cylindrical, or spherical objects, significantly increasing the compliant contact area and enhancing 374 

the richness and efficiency of the perception data during flexible interactions. 375 

Compared to state-of-the-art VTS technologies, the structure most similar to ours is the GelSight Baby Fin 376 

Ray. However, FlexiRay demonstrates a more pronounced compliance advantage. Based on reported data, 377 

at a contact force of 7.5 N, the deformation of the GelSight Baby Fin Ray is approximately 3~4 mm. In 378 

contrast, FlexiRay exhibits a deformation of about 15 mm in the contact depth direction under the same 379 

load, which is more than four times greater than that of the Baby Fin Ray. Additionally, FlexiRay is not 380 

constrained by visual occlusion caused by large deformations. The average effective sensing area of the 381 
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tactile perception pad across different deformation states is approximately 1360 mm², and the effective 382 

sensing area under large deformation remains above 1092 mm², an advantage not found in current VTS 383 

systems. The combination of high compliance and a large sensing area enables FlexiRay to offer 384 

unparalleled flexible visual-tactile perception. It can provide stable conformal grasping while capturing 385 

more detailed tactile information from a single interaction. Deriving benefits from this, FlexiRay achieves 386 

a success rate of 88.3% in a texture recognition task involving perception balls, surpassing the 84.2% 387 

success rate of the GelSight mini. Moreover, in the challenging task of recognizing the magenta ball, 388 

FlexiRay's success rate improves by a factor of two. Additionally, with its integrated multimodal perception 389 

and deep learning models, FlexiRay not only demonstrates proprioceptive capabilities akin to the human 390 

tactile system but also achieves temperature sensing and slip detection, enabling autonomous and safe 391 

human-robot interaction in tasks like cup handovers. FlexiRay bestows exceptional sensory capabilities and 392 

compliant execution abilities to robots, showing great potential for applications in human daily life 393 

assistance. In terms of cost and usability, the affordability of the imaging components and the well-designed 394 

manufacturing process give FlexiRay a clear competitive advantage in terms of both manufacturing cost 395 

and processing difficulty. Unlike technologies like GelSight, which require strong adhesion between 396 

coatings, FlexiRay can be easily fabricated by adding components and casting materials onto a 3D-printed 397 

TPU beam skeleton, enabling integrated molding. The modular design of the front, side, and side beams 398 

allows for easy replacement of the tactile sensing pad, facilitating maintenance and extending the device's 399 

lifespan. 400 

FlexiRay represents a significant advancement in the development of high-resolution, large-coverage, and 401 

cost-effective perception capabilities for soft robotic systems. Future research will focus on integrating 402 

adjustable skeletal stiffness and advanced perception field materials to further enhance the realism of 403 

perception, particularly in texture sensing. Additionally, we plan to expand FlexiRay’s capabilities to multi-404 

finger grippers and explore its applications in dynamic, high-safety tasks such as fruit picking and assistive 405 
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care, paving the way for the next generation of robust, adaptable, and intelligent human-robot interaction 406 

systems. 407 

Methods  408 

Illumination system implementation 409 

• Camera. We chose the camera with high-resolution image capture capability (12 million pixels), 410 

compact structure (8 ×8.5 ×5 mm), and wide-angle view (135°). Hence, the camera can be positioned 411 

within the gripper to obtain clear internal imagery. 412 

• Illumination. Flexible RGBW (red, green, blue, white) LED lights are embedded in the silicone gel in 413 

a series configuration during fabrication. Interlaced side beams are designed to prevent environmental 414 

light interference while preserving adaptability. 415 

• Mirrors. The mirrors are strategically mounted on the finger's backbone at specific angles and positions 416 

to augment the visual field, ensuring comprehensive visibility even during substantial deformations. 417 

To preserve the compliance of the finger without introducing structural interference, the rigid planar 418 

mirror is designed in a T-shape. This configuration minimizes the bonded area with the back flexible 419 

beam while ensuring that the reflective surface remains sufficiently large. 420 

Skeleton and tactile sensing pad implementation 421 

• Finger. The Fin Ray finger manufactured using TPU materials is capable of conforming to various 422 

object shapes without active actuation. 423 

• Tactile Sensing Pad. The tactile sensing pad primarily consists of four layers. We combine Smooth 424 

On Inc. 00-30 silicone with thermochromic pigment to form the temperature-sensing layer. For the 425 

reflective layer, silicone is mixed with aluminum flake and aluminum powder in a mass ratio of 426 
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400:20:3. To enable the acquisition of detailed textural information, a low-hardness (5 A) transparent 427 

silicone is used as the elastic layer. Additionally, we employ PDMS as an elastic support to preserve 428 

the compliance and deformation capacity of the Fin Ray. 429 

Fabrication and manufacturing 430 

Our primary objective is to endow FRE with the capability to perceive tactile information through a vision-431 

based tactile method while maintaining its compliance and passive deformation abilities. To achieve this, 432 

we replaced the traditional acrylic support structure with PDMS material and opted for flexible LED light 433 

strips for illumination. The fabrication process is as follows: 434 

First, Smooth On Inc. 00-30 silicone is mixed with aluminum powder and flake following the specified 435 

mass ratioas the reflective layer. This mixture is spread with an squeegee applicator to create a thin silicone 436 

film with a thickness of 0.15 mm, which is then cured at 100 °C for 1 hour. Subsequently, a laser cutter is 437 

utilized to remove an array of round markers. The silicone is then mixed with two thermochromic pigments 438 

in a mass ratio of 10:1:1 to form the temperature-sensing layer. The pigments possess thermochromic 439 

properties, allowing them to detect temperature variations and undergo color changes in response to 440 

temperatures exceeding or falling below the threshold values. Hence, the two thermosensitive powders 441 

facilitate a temperature-responsive transition of the thermometric layer: it exhibits deep red above 38°C, 442 

shifts to deep blue below 18 °C, and appears light purple under ambient conditions. With the same 443 

application method, we can obtain the 0.15 mm thick temperature-sensing layer and bond the two layers 444 

together. Afterward, we place the prepared composite layer into the mold and mix a low-hardness, 445 

transparent silicone in a ratio of 2.2:1 to create a soft, elastic layer with a hardness (5 shore A) similar to 446 

human skin. The silicone is poured into the mold and cured at room temperature for 90 minutes. 447 

Subsequently, the RGBW LEDs are connected in series and affixed to the TPU front beam. PDMS is mixed 448 

in a ratio of 10:1 to serve as a transparent support structure capable of withstanding large deformations. The 449 

TPU front beam and LED lights are placed into the mold. Further, PDMS material is poured to encapsulate 450 
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these components, resulting in a tactile sensing pad capable of perceiving texture, temperature, and other 451 

contact information. 452 

After fabricating the tactile sensing silicone pad, we can assemble the mirrors, camera, side beams,  finger 453 

framework and the soft pad to construct the FlexiRay. To validate its perception and grasping capabilities, 454 

we propose a gripper consisting of two identical FRE fingers. A single stepper motor actuates the gripper 455 

through linkage mechanisms, enabling a substantial range of motion for opening and closing actions. 456 

CMA-ES based optics layout optimization 457 

The equilibrium between finger compliance and the robustness of the tactile sensing region presents a 458 

significant challenge in the advancement of soft VTS. To mitigate the limitations of FOV and occlusion 459 

blind spots associated with large-deformation finger structures, a multi-mirror FOV optimization method 460 

is proposed, leveraging CMA-ES36,37. Through the optimization of both structural and layout parameters of 461 

the camera and mirrors, a visual reflection system composed of multiple planar mirrors is established on 462 

the back side of the finger. This configuration facilitates a single camera in achieving comprehensive 463 

coverage of the entire deformation range and contact region of the Fin Ray, thereby enabling enhanced 464 

visual-tactile perception. 465 

Initially, the displacement of nodes under the applied force 𝐹  is collected for the Fin Ray, which has 466 

identical structural parameters. The displacement is represented by the coordinates of the lateral 2D cross-467 

section, with the back joint nodes denoted as { 𝑵i }𝑖=1
𝑛  and the tactile sensing area joint nodes labeled as 468 

{𝑷𝑖}𝑖=1
𝑛 . Consequently, a mapping from force to deformation is established, represented as 𝑓: 𝐹 →469 

{𝑵𝑖, 𝑷𝑖}𝑖=1
𝑛 . The subsequent part provides a detailed account of the construction and solution of the optical 470 

layout optimization problem. 471 

Decision variables: 472 

𝒙 = {(𝜃𝑖
mir, 𝑡𝑖

mir, 𝑙𝑖
mir)}

𝑖=1

𝑛−1
∪ {𝑢, 𝜙},     with 𝜃𝑖

mir, 𝑡𝑖
mir, 𝑙𝑖

mir, 𝑢, 𝜙 ∈ ℝ  (1) 473 
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where {𝜃𝑖
mir, 𝑡𝑖

mir, 𝑙𝑖
mir} represents the parameters associated with the mirrors. Specifically, 𝜃𝑖

mir denotes 474 

the angle between the mirror and the line segment formed by two adjacent nodes on the back side, 𝑡𝑖
mir 475 

indicates the midpoint offset distance, and 𝑙𝑖
mir signifies the length of the mirror. The camera is positioned 476 

along the baseline defined by the back side and the base nodes of the tactile sensing pad. The distance from 477 

the camera to the back base node is expressed as a coefficient 𝑢, relative to the length of the baseline. 478 

Furthermore, the angle between the optical axis of the camera and the baseline is represented by 𝜙. 479 

Objective function: 480 

Given a camera with a fixed FOV, the discrete rays produced by the camera can be represented as ℛ =481 

{𝒓𝑗}𝑗=1
𝑚 . The primary objective of the optimization process is to maximize the coverage of the tactile sensing 482 

region by the collection of FOV rays across various deformations. This goal can be achieved through two 483 

approaches: direct imaging and single reflections from mirrors. 484 

By sampling 𝐾 distinct loads from the force-displacement mapping 𝑓, a set of joint nodes 𝒟 is obtained. 485 

Each deformation structure 𝒅 corresponds to a discrete set of target points 𝒑, denoted as 𝒫𝒹, within the 486 

tactile sensing region. The radius of the illumination range for a single FOV ray is defined as  𝑅 ∝ 𝑙𝑐, which 487 

depends on the propagation distance 𝑙𝑐. Consequently, the objective function can be expressed as follows: 488 

Maximize 𝑓(𝑥) =
1

𝐾
∑ ∑ ∑ 𝐼(𝒙, 𝒓, 𝒑, 𝑅)𝒑∈𝒫𝒹𝒓∈ℛ𝒅∈𝒟     (2) 489 

where 𝐼(𝒙, 𝒓, 𝒑, 𝑅) is an indicator function that returns 1 if the target point resides within the coverage range 490 

of the ray beam; otherwise, it returns 0. 491 

Constraints: 492 

The following constraints must be adhered to: 493 

• Geometric constraints. The lengths, offsets, and rotation angles of each mirror, as well as the position 494 

of the camera, must remain within predefined ranges:  𝑙𝑖
mir ∈ [𝑙min, 𝑙max],  𝑡𝑖

mir ∈ [𝑡min, 𝑡max],  𝜃𝑖
mir ∈495 

[𝜃min, 𝜃max],  𝑢 ∈ (0,1).  496 
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• Occlusion constraints. The potential occlusion between mirrors during the deformation process must 497 

be taken into account. If an occlusion exists along the line of sight, the indicator function 𝐼(𝒙, 𝒓, 𝒑, 𝑅) 498 

returns 0. 499 

• Safety constraints. Under all deformation conditions, mirrors must not interfere with the front and 500 

back beams. If this condition is not met, the indicator function 𝐼(𝒙, 𝒓, 𝒑, 𝑅) returns 0 as a penalty. 501 

Solution process: 502 

The optimization process utilizes the CMA-ES algorithm38 to search for optimal layout solutions by 503 

sampling candidate solutions from a multivariate Gaussian distribution. The multivariate Gaussian 504 

distribution is defined as 𝒩(𝝁, 𝜎2𝑪) , where 𝝁  is the mean vector, 𝑪  is the covariance matrix, and 𝜎 505 

represents the step size. 506 

In the 𝑦-th generation of the optimization process, for a population size of β, the candidate solutions {𝒙𝑖}𝑖=1
𝛽

 507 

are obtained by sampling from the distribution 𝒩 (𝝁(𝑦), (𝜎(𝑦))
2

𝑪(𝑦)): 508 

𝒙𝑖 = 𝝁(𝑦) + 𝜎(𝑦)√𝑪(𝑦)𝒔𝑖      (3) 509 

where 𝒔𝑖 ∼ 𝒩(0, 𝑰) , with 𝑰  denoting the identity matrix. The 𝑘  solutions with the highest objective 510 

function values are selected as candidates: {𝑓(𝒙1:𝑘) ∣ 𝑓(𝒙1) ≥ 𝑓(𝒙2) ≥ ⋯ ≥ 𝑓(𝒙𝑘) ≥ ⋯ ≥ 𝑓(𝒙𝛽)} 511 

The evolution paths are updated using the following equations: 512 

𝒑𝜎
(𝑦+1)

= (1 − 𝑐𝜎)𝒑𝜎
(𝑦)

+ √𝑐𝜎(2 − 𝑐𝜎)𝜆𝑤
√𝑪(𝑦)−1

    (4) 513 

𝒑𝑐
(𝑦+1)

= (1 − 𝑐𝑐)𝒑𝑐
(𝑦)

+ √𝑐𝑐(2 − 𝑐𝑐)𝜆𝑤𝐻𝜎
(𝑦+1)

    (5) 514 

where 𝑐𝜎 and 𝑐𝑐 are cumulation factors, respectively. 𝐻𝜎
(𝑦+1)

 is the Heaviside function, and 515 

𝛿 = ∑ 𝑤𝑖√𝑪(𝑦)

𝜂

𝑖=1

𝒔𝑖 ,  𝜆𝑤 =
1

∑ 𝑤𝑖
2𝜂

𝑖=1

,  ∑ 𝑤𝑖

𝜂

𝑖=1

= 1 516 



28 
 

Therefore, the parameters of the multivariate Gaussian distribution for each generation are updated as 517 

follows: 518 

𝝁(𝑦+1) = 𝝁(𝑦) + 𝑐𝑙𝜎(𝑦)√𝑪(𝑦)𝒔𝑖     (6) 519 

𝜎(𝑦+1)  =  𝜎(𝑦)  exp (1, 𝑐𝜎 (
‖𝒑𝜎

(𝑦+1)
‖

𝔼[𝒩(0,𝑰)]
− 1) /𝑑𝜎)    (7) 520 

𝑪(𝑦+1) = (1 + 𝑐1𝑐𝜇(2 − 𝑐𝑐) (1 − 𝐻𝜎
(𝑦+1)

)) 𝑪(𝑦) + 𝑐1∆1 + 𝑐𝜇∆𝜇  (8) 521 

where ∆1  and ∆𝜇  correspondingly denote the rank one and −𝜇  updates. The parameters 𝑐𝑙 , 𝑐1 , and 𝑐𝜇 522 

represent the learning rates for the mean, rank one, and −𝜇 updates, respectively. The damping factor 𝑑𝜎 523 

is used for the adaptive accumulation of step sizes. 524 

Starting with initial parameters that satisfy the constraints, the parameters of the multivariate Gaussian 525 

distribution are updated iteratively. This process continues until either the expected stopping condition for 526 

the objective function is met or the maximum number of optimization generations is reached. The optimized 527 

camera and mirror layout parameters are then derived from the distribution. 528 

Proprioception data collection platform and procedures 529 

The dataset collection platform for proprioception tasks is shown in Fig. 8a. The FlexiRay is mounted at a 530 

fixed position on the optical platform, with the reference coordinate system established at the lower-left 531 

corner of the tactile sensing pad in its initial state. A normal force sensor is attached to the end of the UR5e 532 

robotic arm, with the arm's tool coordinate system adjusted so that its z-axis is parallel to the z-axis of the 533 

reference coordinate system, allowing a force to be applied along this direction. A 3D-printed contact probe 534 

is attached to the force sensor, designed to simulate four contact surface types: hemispherical, square, 535 

triangular, and cylindrical, as shown in Fig. 8b. These designs replicate various contact forms, including 536 

point, edge, and flat surface interactions. Initially, the probe does not contact the finger. Random initial x 537 

and y positions within the feasible contact domain are selected, and a force is applied along the z-axis. Upon 538 
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detecting contact via the force sensor, synchronized data collection is initiated. This process involves 539 

capturing side beam node images using a global camera, recording internal finger images through the 540 

embedded camera, and logging force sensor readings. Simultaneously, the robot’s end-effector positions 541 

are recorded in real time to ensure comprehensive data alignment. 542 

Fig. 8: Data collection platform and procedures. 543 

 544 

a Platform setup. b Probe type of the load cell. 545 

 546 

Machine learning implementation 547 

In terms of model implementation, the PP-LiteSeg semantic segmentation model is built upon the STDC2 548 

backbone, with the objective function using Cross-Entropy Loss. The model is optimized using Stochastic 549 

Gradient Descent (SGD) with momentum set to 0.9 and weight decay of  4 × 10−5. A polynomial decay 550 

learning rate scheduler is employed, with an initial learning rate of 0.01 and a decay factor of 0.9. After 551 

training, the model's performance evaluation shows a mean Intersection over Union (mIoU) of 89.98%. For 552 

the proprioception model, three heads are used to predict normal contact force, contact position, and node 553 

localization, each consisting of fully connected layers with 512 and 256 neurons. The output layers have 554 

dimensions of ℝ1, ℝ3 and ℝ28 , respectively. The loss function for all three outputs is Mean Squared Error 555 

(MSE), with the learning rate set to 0.001. The dataset comprises 5,000 tactile image samples, which are 556 

split into training and validation sets at a 4:1 ratio. Additionally, the classification head of the texture 557 
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recognition model is composed of fully connected layers with 512 and 256 neurons. The loss function used 558 

is Cross-Entropy Loss, and the model is trained with the Adam optimizer, with a learning rate set to 0.001. 559 

Data Availability 560 

The data that support the findings of this study are available within the paper and the Supplementary data 561 

files. Other data generated during the current study are available from the corresponding author on 562 

reasonable request. 563 

Code Availability 564 

The demo implementation of proprioception model is provided in the Supplementary Dataset files.  565 
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